This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | ||
| ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | ||
| Assertion | ordtypecbv | ⊢ recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) = 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | ⊢ 𝐹 = recs ( 𝐺 ) | |
| 2 | ordtypelem.2 | ⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 3 | ordtypelem.3 | ⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) | |
| 4 | breq1 | ⊢ ( 𝑢 = 𝑟 → ( 𝑢 𝑅 𝑣 ↔ 𝑟 𝑅 𝑣 ) ) | |
| 5 | 4 | notbid | ⊢ ( 𝑢 = 𝑟 → ( ¬ 𝑢 𝑅 𝑣 ↔ ¬ 𝑟 𝑅 𝑣 ) ) |
| 6 | 5 | cbvralvw | ⊢ ( ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑣 ) |
| 7 | breq2 | ⊢ ( 𝑣 = 𝑠 → ( 𝑟 𝑅 𝑣 ↔ 𝑟 𝑅 𝑠 ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝑣 = 𝑠 → ( ¬ 𝑟 𝑅 𝑣 ↔ ¬ 𝑟 𝑅 𝑠 ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑣 = 𝑠 → ( ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑣 ↔ ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) ) |
| 10 | 6 9 | bitrid | ⊢ ( 𝑣 = 𝑠 → ( ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) ) |
| 11 | 10 | cbvriotavw | ⊢ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) = ( ℩ 𝑠 ∈ 𝐶 ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) |
| 12 | breq1 | ⊢ ( 𝑗 = 𝑖 → ( 𝑗 𝑅 𝑤 ↔ 𝑖 𝑅 𝑤 ) ) | |
| 13 | 12 | cbvralvw | ⊢ ( ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 ↔ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑤 ) |
| 14 | breq2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑖 𝑅 𝑤 ↔ 𝑖 𝑅 𝑦 ) ) | |
| 15 | 14 | ralbidv | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑤 ↔ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 ) ) |
| 16 | 13 15 | bitrid | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 ↔ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 ) ) |
| 17 | 16 | cbvrabv | ⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 } |
| 18 | 2 17 | eqtri | ⊢ 𝐶 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 } |
| 19 | rneq | ⊢ ( ℎ = 𝑓 → ran ℎ = ran 𝑓 ) | |
| 20 | 19 | raleqdv | ⊢ ( ℎ = 𝑓 → ( ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 ↔ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 ) ) |
| 21 | 20 | rabbidv | ⊢ ( ℎ = 𝑓 → { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 } = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ) |
| 22 | 18 21 | eqtrid | ⊢ ( ℎ = 𝑓 → 𝐶 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ) |
| 23 | 22 | raleqdv | ⊢ ( ℎ = 𝑓 → ( ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ↔ ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
| 24 | 22 23 | riotaeqbidv | ⊢ ( ℎ = 𝑓 → ( ℩ 𝑠 ∈ 𝐶 ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) = ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
| 25 | 11 24 | eqtrid | ⊢ ( ℎ = 𝑓 → ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) = ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
| 26 | 25 | cbvmptv | ⊢ ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) = ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
| 27 | 3 26 | eqtri | ⊢ 𝐺 = ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
| 28 | recseq | ⊢ ( 𝐺 = ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) → recs ( 𝐺 ) = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ recs ( 𝐺 ) = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) |
| 30 | 1 29 | eqtr2i | ⊢ recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) = 𝐹 |