This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence and uniqueness for the function of orbsta . (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | |- X = ( Base ` G ) |
|
| gasta.2 | |- H = { u e. X | ( u .(+) A ) = A } |
||
| orbsta.r | |- .~ = ( G ~QG H ) |
||
| orbsta.f | |- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
||
| Assertion | orbstafun | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> Fun F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | |- X = ( Base ` G ) |
|
| 2 | gasta.2 | |- H = { u e. X | ( u .(+) A ) = A } |
|
| 3 | orbsta.r | |- .~ = ( G ~QG H ) |
|
| 4 | orbsta.f | |- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
|
| 5 | ovexd | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( k .(+) A ) e. _V ) |
|
| 6 | 1 2 | gastacl | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> H e. ( SubGrp ` G ) ) |
| 7 | 1 3 | eqger | |- ( H e. ( SubGrp ` G ) -> .~ Er X ) |
| 8 | 6 7 | syl | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> .~ Er X ) |
| 9 | 1 | fvexi | |- X e. _V |
| 10 | 9 | a1i | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> X e. _V ) |
| 11 | oveq1 | |- ( k = h -> ( k .(+) A ) = ( h .(+) A ) ) |
|
| 12 | simpr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> k .~ h ) |
|
| 13 | subgrcl | |- ( H e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 14 | 1 | subgss | |- ( H e. ( SubGrp ` G ) -> H C_ X ) |
| 15 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 16 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 17 | 1 15 16 3 | eqgval | |- ( ( G e. Grp /\ H C_ X ) -> ( k .~ h <-> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) ) |
| 18 | 13 14 17 | syl2anc | |- ( H e. ( SubGrp ` G ) -> ( k .~ h <-> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) ) |
| 19 | 6 18 | syl | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( k .~ h <-> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) ) |
| 20 | 19 | biimpa | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k e. X /\ h e. X /\ ( ( ( invg ` G ) ` k ) ( +g ` G ) h ) e. H ) ) |
| 21 | 20 | simp1d | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> k e. X ) |
| 22 | 20 | simp2d | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> h e. X ) |
| 23 | 21 22 | jca | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k e. X /\ h e. X ) ) |
| 24 | 1 2 3 | gastacos | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( k e. X /\ h e. X ) ) -> ( k .~ h <-> ( k .(+) A ) = ( h .(+) A ) ) ) |
| 25 | 23 24 | syldan | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k .~ h <-> ( k .(+) A ) = ( h .(+) A ) ) ) |
| 26 | 12 25 | mpbid | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k .~ h ) -> ( k .(+) A ) = ( h .(+) A ) ) |
| 27 | 4 5 8 10 11 26 | qliftfund | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> Fun F ) |