This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the "ordered power series" function. This is the same as mPwSer psrval , but with the addition of a well-order on I we can turn a strict order on R into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| opsrval.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | ||
| opsrval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| opsrval.q | ⊢ < = ( lt ‘ 𝑅 ) | ||
| opsrval.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | ||
| opsrval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| opsrval.l | ⊢ ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } | ||
| opsrval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| opsrval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | ||
| opsrval.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| Assertion | opsrval | ⊢ ( 𝜑 → 𝑂 = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | opsrval.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 3 | opsrval.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | opsrval.q | ⊢ < = ( lt ‘ 𝑅 ) | |
| 5 | opsrval.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| 6 | opsrval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 7 | opsrval.l | ⊢ ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } | |
| 8 | opsrval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 9 | opsrval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) | |
| 10 | opsrval.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 11 | 8 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 12 | 9 | elexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 13 | 8 8 | xpexd | ⊢ ( 𝜑 → ( 𝐼 × 𝐼 ) ∈ V ) |
| 14 | pwexg | ⊢ ( ( 𝐼 × 𝐼 ) ∈ V → 𝒫 ( 𝐼 × 𝐼 ) ∈ V ) | |
| 15 | mptexg | ⊢ ( 𝒫 ( 𝐼 × 𝐼 ) ∈ V → ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ∈ V ) | |
| 16 | 13 14 15 | 3syl | ⊢ ( 𝜑 → ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ∈ V ) |
| 17 | simpl | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → 𝑖 = 𝐼 ) | |
| 18 | 17 | sqxpeqd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑖 × 𝑖 ) = ( 𝐼 × 𝐼 ) ) |
| 19 | 18 | pweqd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → 𝒫 ( 𝑖 × 𝑖 ) = 𝒫 ( 𝐼 × 𝐼 ) ) |
| 20 | ovexd | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑖 mPwSer 𝑠 ) ∈ V ) | |
| 21 | id | ⊢ ( 𝑝 = ( 𝑖 mPwSer 𝑠 ) → 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) | |
| 22 | oveq12 | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑖 mPwSer 𝑠 ) = ( 𝐼 mPwSer 𝑅 ) ) | |
| 23 | 21 22 | sylan9eqr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 𝑝 = ( 𝐼 mPwSer 𝑅 ) ) |
| 24 | 23 1 | eqtr4di | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 𝑝 = 𝑆 ) |
| 25 | 24 | fveq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( Base ‘ 𝑝 ) = ( Base ‘ 𝑆 ) ) |
| 26 | 25 3 | eqtr4di | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( Base ‘ 𝑝 ) = 𝐵 ) |
| 27 | 26 | sseq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) ) |
| 28 | ovex | ⊢ ( ℕ0 ↑m 𝑖 ) ∈ V | |
| 29 | 28 | rabex | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
| 30 | 29 | a1i | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V ) |
| 31 | 17 | adantr | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 𝑖 = 𝐼 ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 33 | rabeq | ⊢ ( ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) | |
| 34 | 32 33 | syl | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 35 | 34 6 | eqtr4di | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
| 36 | simpr | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) | |
| 37 | simpllr | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → 𝑠 = 𝑅 ) | |
| 38 | 37 | fveq2d | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( lt ‘ 𝑠 ) = ( lt ‘ 𝑅 ) ) |
| 39 | 38 4 | eqtr4di | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( lt ‘ 𝑠 ) = < ) |
| 40 | 39 | breqd | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ↔ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ) ) |
| 41 | 31 | adantr | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → 𝑖 = 𝐼 ) |
| 42 | 41 | oveq2d | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( 𝑟 <bag 𝑖 ) = ( 𝑟 <bag 𝐼 ) ) |
| 43 | 42 | breqd | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 ↔ 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 ) ) |
| 44 | 43 | imbi1d | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 45 | 36 44 | raleqbidv | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 46 | 40 45 | anbi12d | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 47 | 36 46 | rexeqbidv | ⊢ ( ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) ∧ 𝑑 = 𝐷 ) → ( ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 48 | 30 35 47 | sbcied2 | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 49 | 48 | orbi1d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) |
| 50 | 27 49 | anbi12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) ) |
| 51 | 50 | opabbidv | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| 52 | 51 | opeq2d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 = 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) |
| 53 | 24 52 | oveq12d | ⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) ∧ 𝑝 = ( 𝑖 mPwSer 𝑠 ) ) → ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
| 54 | 20 53 | csbied | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
| 55 | 19 54 | mpteq12dv | ⊢ ( ( 𝑖 = 𝐼 ∧ 𝑠 = 𝑅 ) → ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) = ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 56 | df-opsr | ⊢ ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) | |
| 57 | 55 56 | ovmpoga | ⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ∧ ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ∈ V ) → ( 𝐼 ordPwSer 𝑅 ) = ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 58 | 11 12 16 57 | syl3anc | ⊢ ( 𝜑 → ( 𝐼 ordPwSer 𝑅 ) = ( 𝑟 ∈ 𝒫 ( 𝐼 × 𝐼 ) ↦ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 59 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → 𝑟 = 𝑇 ) | |
| 60 | 59 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑟 <bag 𝐼 ) = ( 𝑇 <bag 𝐼 ) ) |
| 61 | 60 5 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑟 <bag 𝐼 ) = 𝐶 ) |
| 62 | 61 | breqd | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 ↔ 𝑤 𝐶 𝑧 ) ) |
| 63 | 62 | imbi1d | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 64 | 63 | ralbidv | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ↔ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 65 | 64 | anbi2d | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 66 | 65 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) ) |
| 67 | 66 | orbi1d | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ↔ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) |
| 68 | 67 | anbi2d | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) ) |
| 69 | 68 | opabbidv | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| 70 | 69 7 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = ≤ ) |
| 71 | 70 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 = 〈 ( le ‘ ndx ) , ≤ 〉 ) |
| 72 | 71 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑟 = 𝑇 ) → ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 ( 𝑟 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |
| 73 | 13 10 | sselpwd | ⊢ ( 𝜑 → 𝑇 ∈ 𝒫 ( 𝐼 × 𝐼 ) ) |
| 74 | ovexd | ⊢ ( 𝜑 → ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ∈ V ) | |
| 75 | 58 72 73 74 | fvmptd | ⊢ ( 𝜑 → ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |
| 76 | 2 75 | eqtrid | ⊢ ( 𝜑 → 𝑂 = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |