This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrle.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| opsrle.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | ||
| opsrle.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| opsrle.q | ⊢ < = ( lt ‘ 𝑅 ) | ||
| opsrle.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | ||
| opsrle.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| opsrle.l | ⊢ ≤ = ( le ‘ 𝑂 ) | ||
| opsrle.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| Assertion | opsrle | ⊢ ( 𝜑 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrle.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | opsrle.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 3 | opsrle.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | opsrle.q | ⊢ < = ( lt ‘ 𝑅 ) | |
| 5 | opsrle.c | ⊢ 𝐶 = ( 𝑇 <bag 𝐼 ) | |
| 6 | opsrle.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 7 | opsrle.l | ⊢ ≤ = ( le ‘ 𝑂 ) | |
| 8 | opsrle.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 9 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } | |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝐼 ∈ V ) | |
| 11 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑅 ∈ V ) | |
| 12 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) |
| 13 | 1 2 3 4 5 6 9 10 11 12 | opsrval | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑂 = ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( le ‘ 𝑂 ) = ( le ‘ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 15 | 1 | ovexi | ⊢ 𝑆 ∈ V |
| 16 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | 16 16 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | 18 19 | prss | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 21 | 20 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) ) |
| 22 | 21 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } |
| 23 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⊆ ( 𝐵 × 𝐵 ) | |
| 24 | 22 23 | eqsstrri | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⊆ ( 𝐵 × 𝐵 ) |
| 25 | 17 24 | ssexi | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ∈ V |
| 26 | pleid | ⊢ le = Slot ( le ‘ ndx ) | |
| 27 | 26 | setsid | ⊢ ( ( 𝑆 ∈ V ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = ( le ‘ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 28 | 15 25 27 | mp2an | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = ( le ‘ ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
| 29 | 14 7 28 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| 30 | reldmopsr | ⊢ Rel dom ordPwSer | |
| 31 | 30 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 ordPwSer 𝑅 ) = ∅ ) |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐼 ordPwSer 𝑅 ) = ∅ ) |
| 33 | 32 | fveq1d | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) = ( ∅ ‘ 𝑇 ) ) |
| 34 | 2 33 | eqtrid | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑂 = ( ∅ ‘ 𝑇 ) ) |
| 35 | 0fv | ⊢ ( ∅ ‘ 𝑇 ) = ∅ | |
| 36 | 34 35 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑂 = ∅ ) |
| 37 | 36 | fveq2d | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( le ‘ 𝑂 ) = ( le ‘ ∅ ) ) |
| 38 | 26 | str0 | ⊢ ∅ = ( le ‘ ∅ ) |
| 39 | 37 7 38 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ≤ = ∅ ) |
| 40 | reldmpsr | ⊢ Rel dom mPwSer | |
| 41 | 40 | ovprc | ⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 42 | 41 | adantl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 43 | 1 42 | eqtrid | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝑆 = ∅ ) |
| 44 | 43 | fveq2d | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( Base ‘ 𝑆 ) = ( Base ‘ ∅ ) ) |
| 45 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 46 | 44 3 45 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → 𝐵 = ∅ ) |
| 47 | 46 | xpeq2d | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐵 × 𝐵 ) = ( 𝐵 × ∅ ) ) |
| 48 | xp0 | ⊢ ( 𝐵 × ∅ ) = ∅ | |
| 49 | 47 48 | eqtrdi | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ( 𝐵 × 𝐵 ) = ∅ ) |
| 50 | sseq0 | ⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⊆ ( 𝐵 × 𝐵 ) ∧ ( 𝐵 × 𝐵 ) = ∅ ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = ∅ ) | |
| 51 | 24 49 50 | sylancr | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = ∅ ) |
| 52 | 39 51 | eqtr4d | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
| 53 | 29 52 | pm2.61dan | ⊢ ( 𝜑 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝐵 ∧ ( ∃ 𝑧 ∈ 𝐷 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐷 ( 𝑤 𝐶 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |