This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrval.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| psrval.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| psrval.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑅 ) | ||
| psrval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| psrval.b | ⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) | ||
| psrval.p | ⊢ ✚ = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) | ||
| psrval.t | ⊢ × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) | ||
| psrval.v | ⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) | ||
| psrval.j | ⊢ ( 𝜑 → 𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) ) | ||
| psrval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| psrval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | ||
| Assertion | psrval | ⊢ ( 𝜑 → 𝑆 = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrval.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | psrval.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | psrval.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | psrval.o | ⊢ 𝑂 = ( TopOpen ‘ 𝑅 ) | |
| 6 | psrval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 7 | psrval.b | ⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) | |
| 8 | psrval.p | ⊢ ✚ = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) | |
| 9 | psrval.t | ⊢ × = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) | |
| 10 | psrval.v | ⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) | |
| 11 | psrval.j | ⊢ ( 𝜑 → 𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) ) | |
| 12 | psrval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 13 | psrval.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) | |
| 14 | df-psr | ⊢ mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → mPwSer = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → 𝑖 = 𝐼 ) | |
| 17 | 16 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 18 | rabeq | ⊢ ( ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) | |
| 19 | 17 18 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 20 | 19 6 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
| 21 | 20 | csbeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ⦋ 𝐷 / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
| 22 | ovex | ⊢ ( ℕ0 ↑m 𝑖 ) ∈ V | |
| 23 | 22 | rabex | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∈ V |
| 24 | 20 23 | eqeltrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → 𝐷 ∈ V ) |
| 25 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝑟 = 𝑅 ) | |
| 26 | 25 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 27 | 26 2 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑟 ) = 𝐾 ) |
| 28 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) | |
| 29 | 27 28 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) = ( 𝐾 ↑m 𝐷 ) ) |
| 30 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
| 31 | 29 30 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) = 𝐵 ) |
| 32 | 31 | csbeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ⦋ 𝐵 / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) ) |
| 33 | ovex | ⊢ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) ∈ V | |
| 34 | 31 33 | eqeltrrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → 𝐵 ∈ V ) |
| 35 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) | |
| 36 | 35 | opeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Base ‘ ndx ) , 𝑏 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
| 37 | 25 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑟 = 𝑅 ) |
| 38 | 37 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = ( +g ‘ 𝑅 ) ) |
| 39 | 38 3 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑟 ) = + ) |
| 40 | 39 | ofeqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ∘f ( +g ‘ 𝑟 ) = ∘f + ) |
| 41 | 35 35 | xpeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) ) |
| 42 | 40 41 | reseq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) = ( ∘f + ↾ ( 𝐵 × 𝐵 ) ) ) |
| 43 | 42 8 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) = ✚ ) |
| 44 | 43 | opeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 = 〈 ( +g ‘ ndx ) , ✚ 〉 ) |
| 45 | 28 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑑 = 𝐷 ) |
| 46 | rabeq | ⊢ ( 𝑑 = 𝐷 → { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 48 | 37 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 49 | 48 4 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( .r ‘ 𝑟 ) = · ) |
| 50 | 49 | oveqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
| 51 | 47 50 | mpteq12dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) |
| 52 | 37 51 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 53 | 45 52 | mpteq12dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) |
| 54 | 35 35 53 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) ) |
| 55 | 54 9 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) = × ) |
| 56 | 55 | opeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 = 〈 ( .r ‘ ndx ) , × 〉 ) |
| 57 | 36 44 56 | tpeq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ) |
| 58 | 37 | opeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Scalar ‘ ndx ) , 𝑟 〉 = 〈 ( Scalar ‘ ndx ) , 𝑅 〉 ) |
| 59 | 27 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( Base ‘ 𝑟 ) = 𝐾 ) |
| 60 | 49 | ofeqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ∘f ( .r ‘ 𝑟 ) = ∘f · ) |
| 61 | 45 | xpeq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑑 × { 𝑥 } ) = ( 𝐷 × { 𝑥 } ) ) |
| 62 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝑓 = 𝑓 ) | |
| 63 | 60 61 62 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) = ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) |
| 64 | 59 35 63 | mpoeq123dv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) = ( 𝑥 ∈ 𝐾 , 𝑓 ∈ 𝐵 ↦ ( ( 𝐷 × { 𝑥 } ) ∘f · 𝑓 ) ) ) |
| 65 | 64 10 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) = ∙ ) |
| 66 | 65 | opeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 ) |
| 67 | 37 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) ) |
| 68 | 67 5 | eqtr4di | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( TopOpen ‘ 𝑟 ) = 𝑂 ) |
| 69 | 68 | sneqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { ( TopOpen ‘ 𝑟 ) } = { 𝑂 } ) |
| 70 | 45 69 | xpeq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) = ( 𝐷 × { 𝑂 } ) ) |
| 71 | 70 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) ) |
| 72 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 𝐽 = ( ∏t ‘ ( 𝐷 × { 𝑂 } ) ) ) |
| 73 | 71 72 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) = 𝐽 ) |
| 74 | 73 | opeq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 = 〈 ( TopSet ‘ ndx ) , 𝐽 〉 ) |
| 75 | 58 66 74 | tpeq123d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } = { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) |
| 76 | 57 75 | uneq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) ∧ 𝑏 = 𝐵 ) → ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
| 77 | 34 76 | csbied | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ⦋ 𝐵 / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
| 78 | 32 77 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) ∧ 𝑑 = 𝐷 ) → ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
| 79 | 24 78 | csbied | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ⦋ 𝐷 / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
| 80 | 21 79 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ⦋ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ⦌ ⦋ ( ( Base ‘ 𝑟 ) ↑m 𝑑 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( ∘f ( +g ‘ 𝑟 ) ↾ ( 𝑏 × 𝑏 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( 𝑘 ∈ 𝑑 ↦ ( 𝑟 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑟 ) ( 𝑔 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑟 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑓 ∈ 𝑏 ↦ ( ( 𝑑 × { 𝑥 } ) ∘f ( .r ‘ 𝑟 ) 𝑓 ) ) 〉 , 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( 𝑑 × { ( TopOpen ‘ 𝑟 ) } ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
| 81 | 12 | elexd | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 82 | 13 | elexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 83 | tpex | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∈ V | |
| 84 | tpex | ⊢ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ∈ V | |
| 85 | 83 84 | unex | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ∈ V |
| 86 | 85 | a1i | ⊢ ( 𝜑 → ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ∈ V ) |
| 87 | 15 80 81 82 86 | ovmpod | ⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |
| 88 | 1 87 | eqtrid | ⊢ ( 𝜑 → 𝑆 = ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ✚ 〉 , 〈 ( .r ‘ ndx ) , × 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑅 〉 , 〈 ( ·𝑠 ‘ ndx ) , ∙ 〉 , 〈 ( TopSet ‘ ndx ) , 𝐽 〉 } ) ) |