This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a total order on the set of all power series in s from the index set i given a wellordering r of i and a totally ordered base ring s . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-opsr | ⊢ ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | copws | ⊢ ordPwSer | |
| 1 | vi | ⊢ 𝑖 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | vr | ⊢ 𝑟 | |
| 5 | 1 | cv | ⊢ 𝑖 |
| 6 | 5 5 | cxp | ⊢ ( 𝑖 × 𝑖 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( 𝑖 × 𝑖 ) |
| 8 | cmps | ⊢ mPwSer | |
| 9 | 3 | cv | ⊢ 𝑠 |
| 10 | 5 9 8 | co | ⊢ ( 𝑖 mPwSer 𝑠 ) |
| 11 | vp | ⊢ 𝑝 | |
| 12 | 11 | cv | ⊢ 𝑝 |
| 13 | csts | ⊢ sSet | |
| 14 | cple | ⊢ le | |
| 15 | cnx | ⊢ ndx | |
| 16 | 15 14 | cfv | ⊢ ( le ‘ ndx ) |
| 17 | vx | ⊢ 𝑥 | |
| 18 | vy | ⊢ 𝑦 | |
| 19 | 17 | cv | ⊢ 𝑥 |
| 20 | 18 | cv | ⊢ 𝑦 |
| 21 | 19 20 | cpr | ⊢ { 𝑥 , 𝑦 } |
| 22 | cbs | ⊢ Base | |
| 23 | 12 22 | cfv | ⊢ ( Base ‘ 𝑝 ) |
| 24 | 21 23 | wss | ⊢ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) |
| 25 | vh | ⊢ ℎ | |
| 26 | cn0 | ⊢ ℕ0 | |
| 27 | cmap | ⊢ ↑m | |
| 28 | 26 5 27 | co | ⊢ ( ℕ0 ↑m 𝑖 ) |
| 29 | 25 | cv | ⊢ ℎ |
| 30 | 29 | ccnv | ⊢ ◡ ℎ |
| 31 | cn | ⊢ ℕ | |
| 32 | 30 31 | cima | ⊢ ( ◡ ℎ “ ℕ ) |
| 33 | cfn | ⊢ Fin | |
| 34 | 32 33 | wcel | ⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
| 35 | 34 25 28 | crab | ⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 36 | vd | ⊢ 𝑑 | |
| 37 | vz | ⊢ 𝑧 | |
| 38 | 36 | cv | ⊢ 𝑑 |
| 39 | 37 | cv | ⊢ 𝑧 |
| 40 | 39 19 | cfv | ⊢ ( 𝑥 ‘ 𝑧 ) |
| 41 | cplt | ⊢ lt | |
| 42 | 9 41 | cfv | ⊢ ( lt ‘ 𝑠 ) |
| 43 | 39 20 | cfv | ⊢ ( 𝑦 ‘ 𝑧 ) |
| 44 | 40 43 42 | wbr | ⊢ ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) |
| 45 | vw | ⊢ 𝑤 | |
| 46 | 45 | cv | ⊢ 𝑤 |
| 47 | 4 | cv | ⊢ 𝑟 |
| 48 | cltb | ⊢ <bag | |
| 49 | 47 5 48 | co | ⊢ ( 𝑟 <bag 𝑖 ) |
| 50 | 46 39 49 | wbr | ⊢ 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 |
| 51 | 46 19 | cfv | ⊢ ( 𝑥 ‘ 𝑤 ) |
| 52 | 46 20 | cfv | ⊢ ( 𝑦 ‘ 𝑤 ) |
| 53 | 51 52 | wceq | ⊢ ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) |
| 54 | 50 53 | wi | ⊢ ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
| 55 | 54 45 38 | wral | ⊢ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
| 56 | 44 55 | wa | ⊢ ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 57 | 56 37 38 | wrex | ⊢ ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 58 | 57 36 35 | wsbc | ⊢ [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 59 | 19 20 | wceq | ⊢ 𝑥 = 𝑦 |
| 60 | 58 59 | wo | ⊢ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) |
| 61 | 24 60 | wa | ⊢ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) |
| 62 | 61 17 18 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } |
| 63 | 16 62 | cop | ⊢ 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 |
| 64 | 12 63 13 | co | ⊢ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) |
| 65 | 11 10 64 | csb | ⊢ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) |
| 66 | 4 7 65 | cmpt | ⊢ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
| 67 | 1 3 2 2 66 | cmpo | ⊢ ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |
| 68 | 0 67 | wceq | ⊢ ordPwSer = ( 𝑖 ∈ V , 𝑠 ∈ V ↦ ( 𝑟 ∈ 𝒫 ( 𝑖 × 𝑖 ) ↦ ⦋ ( 𝑖 mPwSer 𝑠 ) / 𝑝 ⦌ ( 𝑝 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑝 ) ∧ ( [ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } / 𝑑 ] ∃ 𝑧 ∈ 𝑑 ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑠 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑑 ( 𝑤 ( 𝑟 <bag 𝑖 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) ) |