This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the "ordered power series" function. This is the same as mPwSer psrval , but with the addition of a well-order on I we can turn a strict order on R into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrval.s | |- S = ( I mPwSer R ) |
|
| opsrval.o | |- O = ( ( I ordPwSer R ) ` T ) |
||
| opsrval.b | |- B = ( Base ` S ) |
||
| opsrval.q | |- .< = ( lt ` R ) |
||
| opsrval.c | |- C = ( T |
||
| opsrval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| opsrval.l | |- .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } |
||
| opsrval.i | |- ( ph -> I e. V ) |
||
| opsrval.r | |- ( ph -> R e. W ) |
||
| opsrval.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| Assertion | opsrval | |- ( ph -> O = ( S sSet <. ( le ` ndx ) , .<_ >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrval.s | |- S = ( I mPwSer R ) |
|
| 2 | opsrval.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 3 | opsrval.b | |- B = ( Base ` S ) |
|
| 4 | opsrval.q | |- .< = ( lt ` R ) |
|
| 5 | opsrval.c | |- C = ( T |
|
| 6 | opsrval.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 7 | opsrval.l | |- .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } |
|
| 8 | opsrval.i | |- ( ph -> I e. V ) |
|
| 9 | opsrval.r | |- ( ph -> R e. W ) |
|
| 10 | opsrval.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 11 | 8 | elexd | |- ( ph -> I e. _V ) |
| 12 | 9 | elexd | |- ( ph -> R e. _V ) |
| 13 | 8 8 | xpexd | |- ( ph -> ( I X. I ) e. _V ) |
| 14 | pwexg | |- ( ( I X. I ) e. _V -> ~P ( I X. I ) e. _V ) |
|
| 15 | mptexg | |- ( ~P ( I X. I ) e. _V -> ( r e. ~P ( I X. I ) |-> ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
|
| 16 | 13 14 15 | 3syl | |- ( ph -> ( r e. ~P ( I X. I ) |-> ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 17 | simpl | |- ( ( i = I /\ s = R ) -> i = I ) |
|
| 18 | 17 | sqxpeqd | |- ( ( i = I /\ s = R ) -> ( i X. i ) = ( I X. I ) ) |
| 19 | 18 | pweqd | |- ( ( i = I /\ s = R ) -> ~P ( i X. i ) = ~P ( I X. I ) ) |
| 20 | ovexd | |- ( ( i = I /\ s = R ) -> ( i mPwSer s ) e. _V ) |
|
| 21 | id | |- ( p = ( i mPwSer s ) -> p = ( i mPwSer s ) ) |
|
| 22 | oveq12 | |- ( ( i = I /\ s = R ) -> ( i mPwSer s ) = ( I mPwSer R ) ) |
|
| 23 | 21 22 | sylan9eqr | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> p = ( I mPwSer R ) ) |
| 24 | 23 1 | eqtr4di | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> p = S ) |
| 25 | 24 | fveq2d | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( Base ` p ) = ( Base ` S ) ) |
| 26 | 25 3 | eqtr4di | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( Base ` p ) = B ) |
| 27 | 26 | sseq2d | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( { x , y } C_ ( Base ` p ) <-> { x , y } C_ B ) ) |
| 28 | ovex | |- ( NN0 ^m i ) e. _V |
|
| 29 | 28 | rabex | |- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } e. _V |
| 30 | 29 | a1i | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } e. _V ) |
| 31 | 17 | adantr | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> i = I ) |
| 32 | 31 | oveq2d | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 33 | rabeq | |- ( ( NN0 ^m i ) = ( NN0 ^m I ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
|
| 34 | 32 33 | syl | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) |
| 35 | 34 6 | eqtr4di | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) |
| 36 | simpr | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> d = D ) |
|
| 37 | simpllr | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> s = R ) |
|
| 38 | 37 | fveq2d | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( lt ` s ) = ( lt ` R ) ) |
| 39 | 38 4 | eqtr4di | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( lt ` s ) = .< ) |
| 40 | 39 | breqd | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( ( x ` z ) ( lt ` s ) ( y ` z ) <-> ( x ` z ) .< ( y ` z ) ) ) |
| 41 | 31 | adantr | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> i = I ) |
| 42 | 41 | oveq2d | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( r |
| 43 | 42 | breqd | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( w ( r |
| 44 | 43 | imbi1d | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( ( w ( r |
| 45 | 36 44 | raleqbidv | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( A. w e. d ( w ( r |
| 46 | 40 45 | anbi12d | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 47 | 36 46 | rexeqbidv | |- ( ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) /\ d = D ) -> ( E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 48 | 30 35 47 | sbcied2 | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 49 | 48 | orbi1d | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 50 | 27 49 | anbi12d | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 51 | 50 | opabbidv | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 52 | 51 | opeq2d | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 53 | 24 52 | oveq12d | |- ( ( ( i = I /\ s = R ) /\ p = ( i mPwSer s ) ) -> ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 54 | 20 53 | csbied | |- ( ( i = I /\ s = R ) -> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 55 | 19 54 | mpteq12dv | |- ( ( i = I /\ s = R ) -> ( r e. ~P ( i X. i ) |-> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
| 56 | df-opsr | |- ordPwSer = ( i e. _V , s e. _V |-> ( r e. ~P ( i X. i ) |-> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
|
| 57 | 55 56 | ovmpoga | |- ( ( I e. _V /\ R e. _V /\ ( r e. ~P ( I X. I ) |-> ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 58 | 11 12 16 57 | syl3anc | |- ( ph -> ( I ordPwSer R ) = ( r e. ~P ( I X. I ) |-> ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 59 | simpr | |- ( ( ph /\ r = T ) -> r = T ) |
|
| 60 | 59 | oveq1d | |- ( ( ph /\ r = T ) -> ( r |
| 61 | 60 5 | eqtr4di | |- ( ( ph /\ r = T ) -> ( r |
| 62 | 61 | breqd | |- ( ( ph /\ r = T ) -> ( w ( r |
| 63 | 62 | imbi1d | |- ( ( ph /\ r = T ) -> ( ( w ( r |
| 64 | 63 | ralbidv | |- ( ( ph /\ r = T ) -> ( A. w e. D ( w ( r |
| 65 | 64 | anbi2d | |- ( ( ph /\ r = T ) -> ( ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 66 | 65 | rexbidv | |- ( ( ph /\ r = T ) -> ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 67 | 66 | orbi1d | |- ( ( ph /\ r = T ) -> ( ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 68 | 67 | anbi2d | |- ( ( ph /\ r = T ) -> ( ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 69 | 68 | opabbidv | |- ( ( ph /\ r = T ) -> { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 70 | 69 7 | eqtr4di | |- ( ( ph /\ r = T ) -> { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 71 | 70 | opeq2d | |- ( ( ph /\ r = T ) -> <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 72 | 71 | oveq2d | |- ( ( ph /\ r = T ) -> ( S sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w ( r |
| 73 | 13 10 | sselpwd | |- ( ph -> T e. ~P ( I X. I ) ) |
| 74 | ovexd | |- ( ph -> ( S sSet <. ( le ` ndx ) , .<_ >. ) e. _V ) |
|
| 75 | 58 72 73 74 | fvmptd | |- ( ph -> ( ( I ordPwSer R ) ` T ) = ( S sSet <. ( le ` ndx ) , .<_ >. ) ) |
| 76 | 2 75 | eqtrid | |- ( ph -> O = ( S sSet <. ( le ` ndx ) , .<_ >. ) ) |