This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprsubrng.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprsubrng | ⊢ ( SubRng ‘ 𝑅 ) = ( SubRng ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprsubrng.o | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | subrngrcl | ⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) | |
| 3 | subrngrcl | ⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) → 𝑂 ∈ Rng ) | |
| 4 | 1 | opprrngb | ⊢ ( 𝑅 ∈ Rng ↔ 𝑂 ∈ Rng ) |
| 5 | 3 4 | sylibr | ⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) → 𝑅 ∈ Rng ) |
| 6 | 1 | opprsubg | ⊢ ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) |
| 7 | 6 | a1i | ⊢ ( 𝑅 ∈ Rng → ( SubGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑂 ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ) ) |
| 9 | ralcom | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) | |
| 13 | 10 11 1 12 | opprmul | ⊢ ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) |
| 14 | 13 | eleq1i | ⊢ ( ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ↔ ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) |
| 15 | 14 | 2ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) |
| 16 | 9 15 | bitr4i | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) |
| 17 | 16 | a1i | ⊢ ( 𝑅 ∈ Rng → ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) |
| 18 | 8 17 | anbi12d | ⊢ ( 𝑅 ∈ Rng → ( ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) ) |
| 19 | 10 11 | issubrng2 | ⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑦 ∈ 𝑥 ( 𝑧 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑥 ) ) ) |
| 20 | 1 10 | opprbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 21 | 20 12 | issubrng2 | ⊢ ( 𝑂 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) ) |
| 22 | 4 21 | sylbi | ⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑂 ) ↔ ( 𝑥 ∈ ( SubGrp ‘ 𝑂 ) ∧ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( 𝑦 ( .r ‘ 𝑂 ) 𝑧 ) ∈ 𝑥 ) ) ) |
| 23 | 18 19 22 | 3bitr4d | ⊢ ( 𝑅 ∈ Rng → ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRng ‘ 𝑂 ) ) ) |
| 24 | 2 5 23 | pm5.21nii | ⊢ ( 𝑥 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝑥 ∈ ( SubRng ‘ 𝑂 ) ) |
| 25 | 24 | eqriv | ⊢ ( SubRng ‘ 𝑅 ) = ( SubRng ‘ 𝑂 ) |