This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrngint | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRng ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngsubg | ⊢ ( 𝑟 ∈ ( SubRng ‘ 𝑅 ) → 𝑟 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 2 | 1 | ssriv | ⊢ ( SubRng ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) |
| 3 | sstr | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ ( SubRng ‘ 𝑅 ) ⊆ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) → 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ) |
| 5 | subgint | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 7 | ssel2 | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRng ‘ 𝑅 ) ) | |
| 8 | 7 | ad4ant14 | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑟 ∈ ( SubRng ‘ 𝑅 ) ) |
| 9 | simprl | ⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑥 ∈ ∩ 𝑆 ) | |
| 10 | elinti | ⊢ ( 𝑥 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑥 ∈ 𝑟 ) ) | |
| 11 | 10 | imp | ⊢ ( ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
| 12 | 9 11 | sylan | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑥 ∈ 𝑟 ) |
| 13 | simprr | ⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑦 ∈ ∩ 𝑆 ) | |
| 14 | elinti | ⊢ ( 𝑦 ∈ ∩ 𝑆 → ( 𝑟 ∈ 𝑆 → 𝑦 ∈ 𝑟 ) ) | |
| 15 | 14 | imp | ⊢ ( ( 𝑦 ∈ ∩ 𝑆 ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
| 16 | 13 15 | sylan | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → 𝑦 ∈ 𝑟 ) |
| 17 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 18 | 17 | subrngmcl | ⊢ ( ( 𝑟 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑟 ∧ 𝑦 ∈ 𝑟 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 19 | 8 12 16 18 | syl3anc | ⊢ ( ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑟 ∈ 𝑆 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 20 | 19 | ralrimiva | ⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 21 | ovex | ⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ V | |
| 22 | 21 | elint2 | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ↔ ∀ 𝑟 ∈ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑟 ) |
| 23 | 20 22 | sylibr | ⊢ ( ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 24 | 23 | ralrimivva | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 25 | ssn0 | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( SubRng ‘ 𝑅 ) ≠ ∅ ) | |
| 26 | n0 | ⊢ ( ( SubRng ‘ 𝑅 ) ≠ ∅ ↔ ∃ 𝑟 𝑟 ∈ ( SubRng ‘ 𝑅 ) ) | |
| 27 | subrngrcl | ⊢ ( 𝑟 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) | |
| 28 | 27 | exlimiv | ⊢ ( ∃ 𝑟 𝑟 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
| 29 | 26 28 | sylbi | ⊢ ( ( SubRng ‘ 𝑅 ) ≠ ∅ → 𝑅 ∈ Rng ) |
| 30 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 31 | 30 17 | issubrng2 | ⊢ ( 𝑅 ∈ Rng → ( ∩ 𝑆 ∈ ( SubRng ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
| 32 | 25 29 31 | 3syl | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ( ∩ 𝑆 ∈ ( SubRng ‘ 𝑅 ) ↔ ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ∩ 𝑆 ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ ∩ 𝑆 ) ) ) |
| 33 | 6 24 32 | mpbir2and | ⊢ ( ( 𝑆 ⊆ ( SubRng ‘ 𝑅 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubRng ‘ 𝑅 ) ) |