This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr . (Contributed by SN, 20-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprnzr.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprnzrb | ⊢ ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprnzr.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | 1 | opprringb | ⊢ ( 𝑅 ∈ Ring ↔ 𝑂 ∈ Ring ) |
| 3 | 2 | anbi1i | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ↔ ( 𝑂 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 4 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 6 | 4 5 | isnzr | ⊢ ( 𝑅 ∈ NzRing ↔ ( 𝑅 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 7 | 1 4 | oppr1 | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑂 ) |
| 8 | 1 5 | oppr0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑂 ) |
| 9 | 7 8 | isnzr | ⊢ ( 𝑂 ∈ NzRing ↔ ( 𝑂 ∈ Ring ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 10 | 3 6 9 | 3bitr4i | ⊢ ( 𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing ) |