This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn . (Contributed by SN, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprdomn.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprdomnb | |- ( R e. Domn <-> O e. Domn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 | |- O = ( oppR ` R ) |
|
| 2 | 1 | opprnzrb | |- ( R e. NzRing <-> O e. NzRing ) |
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 1 3 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | eqid | |- ( .r ` O ) = ( .r ` O ) |
|
| 7 | 3 5 1 6 | opprmul | |- ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) |
| 8 | 7 | eqcomi | |- ( x ( .r ` R ) y ) = ( y ( .r ` O ) x ) |
| 9 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 10 | 1 9 | oppr0 | |- ( 0g ` R ) = ( 0g ` O ) |
| 11 | 8 10 | eqeq12i | |- ( ( x ( .r ` R ) y ) = ( 0g ` R ) <-> ( y ( .r ` O ) x ) = ( 0g ` O ) ) |
| 12 | 10 | eqeq2i | |- ( x = ( 0g ` R ) <-> x = ( 0g ` O ) ) |
| 13 | 10 | eqeq2i | |- ( y = ( 0g ` R ) <-> y = ( 0g ` O ) ) |
| 14 | 12 13 | orbi12i | |- ( ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) <-> ( x = ( 0g ` O ) \/ y = ( 0g ` O ) ) ) |
| 15 | orcom | |- ( ( x = ( 0g ` O ) \/ y = ( 0g ` O ) ) <-> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) |
|
| 16 | 14 15 | bitri | |- ( ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) <-> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) |
| 17 | 11 16 | imbi12i | |- ( ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
| 18 | 4 17 | raleqbii | |- ( A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> A. y e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
| 19 | 4 18 | raleqbii | |- ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> A. x e. ( Base ` O ) A. y e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
| 20 | ralcom | |- ( A. x e. ( Base ` O ) A. y e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) <-> A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
|
| 21 | 19 20 | bitri | |- ( A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) <-> A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) |
| 22 | 2 21 | anbi12i | |- ( ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) <-> ( O e. NzRing /\ A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) ) |
| 23 | 3 5 9 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) ) |
| 24 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 25 | eqid | |- ( 0g ` O ) = ( 0g ` O ) |
|
| 26 | 24 6 25 | isdomn | |- ( O e. Domn <-> ( O e. NzRing /\ A. y e. ( Base ` O ) A. x e. ( Base ` O ) ( ( y ( .r ` O ) x ) = ( 0g ` O ) -> ( y = ( 0g ` O ) \/ x = ( 0g ` O ) ) ) ) ) |
| 27 | 22 23 26 | 3bitr4i | |- ( R e. Domn <-> O e. Domn ) |