This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for strict ordering in orthoposets. ( chpsscon3 analog.) (Contributed by NM, 4-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opltcon3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| opltcon3.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| opltcon3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | opltcon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( ⊥ ‘ 𝑌 ) < ( ⊥ ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opltcon3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | opltcon3.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | opltcon3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | 1 4 3 | oplecon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ) ) |
| 6 | 1 4 3 | oplecon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ( le ‘ 𝐾 ) 𝑋 ↔ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) |
| 7 | 6 | 3com23 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ( le ‘ 𝐾 ) 𝑋 ↔ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) |
| 8 | 7 | notbid | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ( le ‘ 𝐾 ) 𝑋 ↔ ¬ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) |
| 9 | 5 8 | anbi12d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ ¬ 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ∧ ¬ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) ) |
| 10 | opposet | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) | |
| 11 | 1 4 2 | pltval3 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ ¬ 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 12 | 10 11 | syl3an1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ ¬ 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
| 13 | 10 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 14 | 1 3 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 16 | 1 3 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 18 | 1 4 2 | pltval3 | ⊢ ( ( 𝐾 ∈ Poset ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) < ( ⊥ ‘ 𝑋 ) ↔ ( ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ∧ ¬ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) ) |
| 19 | 13 15 17 18 | syl3anc | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) < ( ⊥ ‘ 𝑋 ) ↔ ( ( ⊥ ‘ 𝑌 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑋 ) ∧ ¬ ( ⊥ ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ⊥ ‘ 𝑌 ) ) ) ) |
| 20 | 9 12 19 | 3bitr4d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( ⊥ ‘ 𝑌 ) < ( ⊥ ‘ 𝑋 ) ) ) |