This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opposet | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 2 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 8 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 9 | eqid | ⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | isopos | ⊢ ( 𝐾 ∈ OP ↔ ( ( 𝐾 ∈ Poset ∧ ( Base ‘ 𝐾 ) ∈ dom ( lub ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) ∈ dom ( glb ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → ( ( oc ‘ 𝐾 ) ‘ 𝑦 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑥 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 0. ‘ 𝐾 ) ) ) ) |
| 11 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Poset ∧ ( Base ‘ 𝐾 ) ∈ dom ( lub ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) ∈ dom ( glb ‘ 𝐾 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = 𝑥 ∧ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 → ( ( oc ‘ 𝐾 ) ‘ 𝑦 ) ( le ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) ) ∧ ( 𝑥 ( join ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 1. ‘ 𝐾 ) ∧ ( 𝑥 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑥 ) ) = ( 0. ‘ 𝐾 ) ) ) → 𝐾 ∈ Poset ) | |
| 12 | 10 11 | sylbi | ⊢ ( 𝐾 ∈ OP → 𝐾 ∈ Poset ) |