This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for orthoposets. ( chsscon3 analog.) (Contributed by NM, 4-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opcon3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| opcon3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| opcon3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| Assertion | oplecon3b | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opcon3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | opcon3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | opcon3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 4 | 1 2 3 | oplecon3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |
| 5 | simp1 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) | |
| 6 | 1 3 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 7 | 6 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ) |
| 8 | 1 3 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 10 | 1 2 3 | oplecon3 | ⊢ ( ( 𝐾 ∈ OP ∧ ( ⊥ ‘ 𝑌 ) ∈ 𝐵 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 11 | 5 7 9 10 | syl3anc | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 12 | 1 3 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 14 | 1 3 | opococ | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) |
| 16 | 13 15 | breq12d | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≤ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ↔ 𝑋 ≤ 𝑌 ) ) |
| 17 | 11 16 | sylibd | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) → 𝑋 ≤ 𝑌 ) ) |
| 18 | 4 17 | impbid | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ⊥ ‘ 𝑌 ) ≤ ( ⊥ ‘ 𝑋 ) ) ) |