This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate expression for the "less than" relation. ( dfpss3 analog.) (Contributed by NM, 4-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pltval3 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | 2 3 | pltval | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 5 | 1 2 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 7 | breq1 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋 ) ) | |
| 8 | 6 7 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 → 𝑌 ≤ 𝑋 ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 = 𝑌 → 𝑌 ≤ 𝑋 ) ) |
| 10 | 1 2 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 11 | 10 | biimpd | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 12 | 11 | expdimp | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 ≤ 𝑋 → 𝑋 = 𝑌 ) ) |
| 13 | 9 12 | impbid | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 = 𝑌 ↔ 𝑌 ≤ 𝑋 ) ) |
| 14 | 13 | necon3abid | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ≠ 𝑌 ↔ ¬ 𝑌 ≤ 𝑋 ) ) |
| 15 | 14 | pm5.32da | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |
| 16 | 4 15 | bitrd | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑌 ≤ 𝑋 ) ) ) |