This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law for strict ordering. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpsscon3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsscon3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) | |
| 2 | chsscon3 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 4 | 3 | notbid | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ¬ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 5 | 1 4 | anbi12d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ∧ ¬ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 6 | dfpss3 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) | |
| 7 | dfpss3 | ⊢ ( ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ↔ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ∧ ¬ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊊ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊊ ( ⊥ ‘ 𝐴 ) ) ) |