This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpsub.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpsub.1 | ⊢ ≤ = ( le ‘ 𝐺 ) | ||
| ogrpinv.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| ogrpinv.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | ogrpinv0le | ⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ≤ 𝑋 ↔ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpsub.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpsub.1 | ⊢ ≤ = ( le ‘ 𝐺 ) | |
| 3 | ogrpinv.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | ogrpinv.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | isogrp | ⊢ ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) ) | |
| 6 | 5 | simprbi | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝐺 ∈ oMnd ) |
| 8 | omndmnd | ⊢ ( 𝐺 ∈ oMnd → 𝐺 ∈ Mnd ) | |
| 9 | 1 4 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 10 | 7 8 9 | 3syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ∈ 𝐵 ) |
| 11 | simplr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 12 | ogrpgrp | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝐺 ∈ Grp ) |
| 14 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 | 13 11 14 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 16 | simpr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 𝑋 ) | |
| 17 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 18 | 1 2 17 | omndadd | ⊢ ( ( 𝐺 ∈ oMnd ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 19 | 7 10 11 15 16 18 | syl131anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ≤ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 20 | 1 17 4 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 21 | 13 15 20 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 22 | 1 17 4 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
| 23 | 13 11 22 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑋 ) ) = 0 ) |
| 24 | 19 21 23 | 3brtr3d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → ( 𝐼 ‘ 𝑋 ) ≤ 0 ) |
| 25 | 6 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝐺 ∈ oMnd ) |
| 26 | 12 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝐺 ∈ Grp ) |
| 27 | simplr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 𝑋 ∈ 𝐵 ) | |
| 28 | 26 27 14 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 29 | 25 8 9 | 3syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 0 ∈ 𝐵 ) |
| 30 | simpr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 𝐼 ‘ 𝑋 ) ≤ 0 ) | |
| 31 | 1 2 17 | omndadd | ⊢ ( ( 𝐺 ∈ oMnd ∧ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ≤ ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 32 | 25 28 29 27 30 31 | syl131anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ≤ ( 0 ( +g ‘ 𝐺 ) 𝑋 ) ) |
| 33 | 1 17 4 3 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
| 34 | 26 27 33 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = 0 ) |
| 35 | 1 17 4 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
| 36 | 26 27 35 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → ( 0 ( +g ‘ 𝐺 ) 𝑋 ) = 𝑋 ) |
| 37 | 32 34 36 | 3brtr3d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) → 0 ≤ 𝑋 ) |
| 38 | 24 37 | impbida | ⊢ ( ( 𝐺 ∈ oGrp ∧ 𝑋 ∈ 𝐵 ) → ( 0 ≤ 𝑋 ↔ ( 𝐼 ‘ 𝑋 ) ≤ 0 ) ) |