This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative ordered monoid, the ordering is compatible with group power. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndmul.0 | |- B = ( Base ` M ) |
|
| omndmul.1 | |- .<_ = ( le ` M ) |
||
| omndmul.2 | |- .x. = ( .g ` M ) |
||
| omndmul.o | |- ( ph -> M e. oMnd ) |
||
| omndmul.c | |- ( ph -> M e. CMnd ) |
||
| omndmul.x | |- ( ph -> X e. B ) |
||
| omndmul.y | |- ( ph -> Y e. B ) |
||
| omndmul.n | |- ( ph -> N e. NN0 ) |
||
| omndmul.l | |- ( ph -> X .<_ Y ) |
||
| Assertion | omndmul | |- ( ph -> ( N .x. X ) .<_ ( N .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndmul.0 | |- B = ( Base ` M ) |
|
| 2 | omndmul.1 | |- .<_ = ( le ` M ) |
|
| 3 | omndmul.2 | |- .x. = ( .g ` M ) |
|
| 4 | omndmul.o | |- ( ph -> M e. oMnd ) |
|
| 5 | omndmul.c | |- ( ph -> M e. CMnd ) |
|
| 6 | omndmul.x | |- ( ph -> X e. B ) |
|
| 7 | omndmul.y | |- ( ph -> Y e. B ) |
|
| 8 | omndmul.n | |- ( ph -> N e. NN0 ) |
|
| 9 | omndmul.l | |- ( ph -> X .<_ Y ) |
|
| 10 | oveq1 | |- ( m = 0 -> ( m .x. X ) = ( 0 .x. X ) ) |
|
| 11 | oveq1 | |- ( m = 0 -> ( m .x. Y ) = ( 0 .x. Y ) ) |
|
| 12 | 10 11 | breq12d | |- ( m = 0 -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( 0 .x. X ) .<_ ( 0 .x. Y ) ) ) |
| 13 | oveq1 | |- ( m = n -> ( m .x. X ) = ( n .x. X ) ) |
|
| 14 | oveq1 | |- ( m = n -> ( m .x. Y ) = ( n .x. Y ) ) |
|
| 15 | 13 14 | breq12d | |- ( m = n -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( n .x. X ) .<_ ( n .x. Y ) ) ) |
| 16 | oveq1 | |- ( m = ( n + 1 ) -> ( m .x. X ) = ( ( n + 1 ) .x. X ) ) |
|
| 17 | oveq1 | |- ( m = ( n + 1 ) -> ( m .x. Y ) = ( ( n + 1 ) .x. Y ) ) |
|
| 18 | 16 17 | breq12d | |- ( m = ( n + 1 ) -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( ( n + 1 ) .x. X ) .<_ ( ( n + 1 ) .x. Y ) ) ) |
| 19 | oveq1 | |- ( m = N -> ( m .x. X ) = ( N .x. X ) ) |
|
| 20 | oveq1 | |- ( m = N -> ( m .x. Y ) = ( N .x. Y ) ) |
|
| 21 | 19 20 | breq12d | |- ( m = N -> ( ( m .x. X ) .<_ ( m .x. Y ) <-> ( N .x. X ) .<_ ( N .x. Y ) ) ) |
| 22 | omndtos | |- ( M e. oMnd -> M e. Toset ) |
|
| 23 | tospos | |- ( M e. Toset -> M e. Poset ) |
|
| 24 | 4 22 23 | 3syl | |- ( ph -> M e. Poset ) |
| 25 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 26 | 1 25 3 | mulg0 | |- ( Y e. B -> ( 0 .x. Y ) = ( 0g ` M ) ) |
| 27 | 7 26 | syl | |- ( ph -> ( 0 .x. Y ) = ( 0g ` M ) ) |
| 28 | omndmnd | |- ( M e. oMnd -> M e. Mnd ) |
|
| 29 | 1 25 | mndidcl | |- ( M e. Mnd -> ( 0g ` M ) e. B ) |
| 30 | 4 28 29 | 3syl | |- ( ph -> ( 0g ` M ) e. B ) |
| 31 | 27 30 | eqeltrd | |- ( ph -> ( 0 .x. Y ) e. B ) |
| 32 | 1 2 | posref | |- ( ( M e. Poset /\ ( 0 .x. Y ) e. B ) -> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) |
| 33 | 24 31 32 | syl2anc | |- ( ph -> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) |
| 34 | 1 25 3 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` M ) ) |
| 35 | 34 | adantr | |- ( ( X e. B /\ Y e. B ) -> ( 0 .x. X ) = ( 0g ` M ) ) |
| 36 | 26 | adantl | |- ( ( X e. B /\ Y e. B ) -> ( 0 .x. Y ) = ( 0g ` M ) ) |
| 37 | 35 36 | eqtr4d | |- ( ( X e. B /\ Y e. B ) -> ( 0 .x. X ) = ( 0 .x. Y ) ) |
| 38 | 37 | breq1d | |- ( ( X e. B /\ Y e. B ) -> ( ( 0 .x. X ) .<_ ( 0 .x. Y ) <-> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) ) |
| 39 | 6 7 38 | syl2anc | |- ( ph -> ( ( 0 .x. X ) .<_ ( 0 .x. Y ) <-> ( 0 .x. Y ) .<_ ( 0 .x. Y ) ) ) |
| 40 | 33 39 | mpbird | |- ( ph -> ( 0 .x. X ) .<_ ( 0 .x. Y ) ) |
| 41 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 42 | 4 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. oMnd ) |
| 43 | 7 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> Y e. B ) |
| 44 | 42 28 | syl | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. Mnd ) |
| 45 | simplr | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> n e. NN0 ) |
|
| 46 | 6 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> X e. B ) |
| 47 | 1 3 44 45 46 | mulgnn0cld | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. X ) e. B ) |
| 48 | 1 3 44 45 43 | mulgnn0cld | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. Y ) e. B ) |
| 49 | simpr | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( n .x. X ) .<_ ( n .x. Y ) ) |
|
| 50 | 9 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> X .<_ Y ) |
| 51 | 5 | ad2antrr | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> M e. CMnd ) |
| 52 | 1 2 41 42 43 47 46 48 49 50 51 | omndadd2d | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n .x. X ) ( +g ` M ) X ) .<_ ( ( n .x. Y ) ( +g ` M ) Y ) ) |
| 53 | 1 3 41 | mulgnn0p1 | |- ( ( M e. Mnd /\ n e. NN0 /\ X e. B ) -> ( ( n + 1 ) .x. X ) = ( ( n .x. X ) ( +g ` M ) X ) ) |
| 54 | 44 45 46 53 | syl3anc | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. X ) = ( ( n .x. X ) ( +g ` M ) X ) ) |
| 55 | 1 3 41 | mulgnn0p1 | |- ( ( M e. Mnd /\ n e. NN0 /\ Y e. B ) -> ( ( n + 1 ) .x. Y ) = ( ( n .x. Y ) ( +g ` M ) Y ) ) |
| 56 | 44 45 43 55 | syl3anc | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. Y ) = ( ( n .x. Y ) ( +g ` M ) Y ) ) |
| 57 | 52 54 56 | 3brtr4d | |- ( ( ( ph /\ n e. NN0 ) /\ ( n .x. X ) .<_ ( n .x. Y ) ) -> ( ( n + 1 ) .x. X ) .<_ ( ( n + 1 ) .x. Y ) ) |
| 58 | 12 15 18 21 40 57 | nn0indd | |- ( ( ph /\ N e. NN0 ) -> ( N .x. X ) .<_ ( N .x. Y ) ) |
| 59 | 8 58 | mpdan | |- ( ph -> ( N .x. X ) .<_ ( N .x. Y ) ) |