This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Less-than relation for G (see om2uz0i ). (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uzlti | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | eleq2 | ⊢ ( 𝑧 = ∅ → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ ∅ ) ) | |
| 4 | fveq2 | ⊢ ( 𝑧 = ∅ → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ∅ ) ) | |
| 5 | 4 | breq2d | ⊢ ( 𝑧 = ∅ → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ ∅ ) ) ) |
| 6 | 3 5 | imbi12d | ⊢ ( 𝑧 = ∅ → ( ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ↔ ( 𝐴 ∈ ∅ → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ ∅ ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑧 = ∅ → ( ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ∈ ∅ → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 8 | eleq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 13 | eleq2 | ⊢ ( 𝑧 = suc 𝑦 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ suc 𝑦 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑧 = suc 𝑦 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ suc 𝑦 ) ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑧 = suc 𝑦 → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑧 = suc 𝑦 → ( ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑧 = suc 𝑦 → ( ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ∈ suc 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 18 | eleq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) | |
| 20 | 19 | breq2d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝑧 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑧 ) ) ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 23 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 24 | 23 | pm2.21i | ⊢ ( 𝐴 ∈ ∅ → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ ∅ ) ) |
| 25 | 24 | a1i | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ ∅ → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ ∅ ) ) ) |
| 26 | id | ⊢ ( ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) ) | |
| 27 | fveq2 | ⊢ ( 𝐴 = 𝑦 → ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 28 | 27 | a1i | ⊢ ( ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) → ( 𝐴 = 𝑦 → ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 29 | 26 28 | orim12d | ⊢ ( ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ∨ ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 30 | elsuc2g | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ suc 𝑦 ↔ ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) ) | |
| 31 | 30 | bicomd | ⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ↔ 𝐴 ∈ suc 𝑦 ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ↔ 𝐴 ∈ suc 𝑦 ) ) |
| 33 | 1 2 | om2uzsuci | ⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ suc 𝑦 ) = ( ( 𝐺 ‘ 𝑦 ) + 1 ) ) |
| 34 | 33 | breq2d | ⊢ ( 𝑦 ∈ ω → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( ( 𝐺 ‘ 𝑦 ) + 1 ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( ( 𝐺 ‘ 𝑦 ) + 1 ) ) ) |
| 36 | 1 2 | om2uzuzi | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 37 | 1 2 | om2uzuzi | ⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 38 | eluzelz | ⊢ ( ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝐴 ) ∈ ℤ ) | |
| 39 | eluzelz | ⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝑦 ) ∈ ℤ ) | |
| 40 | zleltp1 | ⊢ ( ( ( 𝐺 ‘ 𝐴 ) ∈ ℤ ∧ ( 𝐺 ‘ 𝑦 ) ∈ ℤ ) → ( ( 𝐺 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( ( 𝐺 ‘ 𝑦 ) + 1 ) ) ) | |
| 41 | 38 39 40 | syl2an | ⊢ ( ( ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) → ( ( 𝐺 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( ( 𝐺 ‘ 𝑦 ) + 1 ) ) ) |
| 42 | 36 37 41 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐺 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝐴 ) < ( ( 𝐺 ‘ 𝑦 ) + 1 ) ) ) |
| 43 | 36 38 | syl | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℤ ) |
| 44 | 43 | zred | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 45 | 37 39 | syl | ⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ℤ ) |
| 46 | 45 | zred | ⊢ ( 𝑦 ∈ ω → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 47 | leloe | ⊢ ( ( ( 𝐺 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝑦 ) ↔ ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ∨ ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 48 | 44 46 47 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐺 ‘ 𝐴 ) ≤ ( 𝐺 ‘ 𝑦 ) ↔ ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ∨ ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 49 | 35 42 48 | 3bitr2rd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ∨ ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 50 | 32 49 | imbi12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ∨ ( 𝐺 ‘ 𝐴 ) = ( 𝐺 ‘ 𝑦 ) ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 51 | 29 50 | imbitrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 52 | 51 | expcom | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 53 | 52 | a2d | ⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐴 ∈ ω → ( 𝐴 ∈ suc 𝑦 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 54 | 7 12 17 22 25 53 | finds | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) ) |
| 55 | 54 | impcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |