This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping G (see om2uz0i ) preserves order. (Contributed by NM, 4-May-2005) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| Assertion | om2uzlt2i | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | 1 2 | om2uzlti | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 → ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
| 4 | 1 2 | om2uzlti | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 ∈ 𝐴 → ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ) ) |
| 5 | fveq2 | ⊢ ( 𝐵 = 𝐴 → ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐵 = 𝐴 → ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) |
| 7 | 4 6 | orim12d | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) → ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) → ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) |
| 9 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 10 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 11 | onsseleq | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) | |
| 12 | ontri1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) | |
| 13 | 11 12 | bitr3d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 14 | 9 10 13 | syl2anr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 15 | 1 2 | om2uzuzi | ⊢ ( 𝐵 ∈ ω → ( 𝐺 ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 16 | eluzelre | ⊢ ( ( 𝐺 ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐵 ∈ ω → ( 𝐺 ‘ 𝐵 ) ∈ ℝ ) |
| 18 | 1 2 | om2uzuzi | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 19 | eluzelre | ⊢ ( ( 𝐺 ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) | |
| 20 | 18 19 | syl | ⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) |
| 21 | leloe | ⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐴 ) ↔ ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ) ) | |
| 22 | lenlt | ⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐺 ‘ 𝐵 ) ≤ ( 𝐺 ‘ 𝐴 ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) | |
| 23 | 21 22 | bitr3d | ⊢ ( ( ( 𝐺 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐺 ‘ 𝐴 ) ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
| 24 | 17 20 23 | syl2anr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( ( 𝐺 ‘ 𝐵 ) < ( 𝐺 ‘ 𝐴 ) ∨ ( 𝐺 ‘ 𝐵 ) = ( 𝐺 ‘ 𝐴 ) ) ↔ ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
| 25 | 8 14 24 | 3imtr3d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ¬ 𝐴 ∈ 𝐵 → ¬ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |
| 26 | 3 25 | impcon4bid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐺 ‘ 𝐴 ) < ( 𝐺 ‘ 𝐵 ) ) ) |