This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Less-than relation for G (see om2uz0i ). (Contributed by NM, 3-Oct-2004) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzlti | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B -> ( G ` A ) < ( G ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | eleq2 | |- ( z = (/) -> ( A e. z <-> A e. (/) ) ) |
|
| 4 | fveq2 | |- ( z = (/) -> ( G ` z ) = ( G ` (/) ) ) |
|
| 5 | 4 | breq2d | |- ( z = (/) -> ( ( G ` A ) < ( G ` z ) <-> ( G ` A ) < ( G ` (/) ) ) ) |
| 6 | 3 5 | imbi12d | |- ( z = (/) -> ( ( A e. z -> ( G ` A ) < ( G ` z ) ) <-> ( A e. (/) -> ( G ` A ) < ( G ` (/) ) ) ) ) |
| 7 | 6 | imbi2d | |- ( z = (/) -> ( ( A e. _om -> ( A e. z -> ( G ` A ) < ( G ` z ) ) ) <-> ( A e. _om -> ( A e. (/) -> ( G ` A ) < ( G ` (/) ) ) ) ) ) |
| 8 | eleq2 | |- ( z = y -> ( A e. z <-> A e. y ) ) |
|
| 9 | fveq2 | |- ( z = y -> ( G ` z ) = ( G ` y ) ) |
|
| 10 | 9 | breq2d | |- ( z = y -> ( ( G ` A ) < ( G ` z ) <-> ( G ` A ) < ( G ` y ) ) ) |
| 11 | 8 10 | imbi12d | |- ( z = y -> ( ( A e. z -> ( G ` A ) < ( G ` z ) ) <-> ( A e. y -> ( G ` A ) < ( G ` y ) ) ) ) |
| 12 | 11 | imbi2d | |- ( z = y -> ( ( A e. _om -> ( A e. z -> ( G ` A ) < ( G ` z ) ) ) <-> ( A e. _om -> ( A e. y -> ( G ` A ) < ( G ` y ) ) ) ) ) |
| 13 | eleq2 | |- ( z = suc y -> ( A e. z <-> A e. suc y ) ) |
|
| 14 | fveq2 | |- ( z = suc y -> ( G ` z ) = ( G ` suc y ) ) |
|
| 15 | 14 | breq2d | |- ( z = suc y -> ( ( G ` A ) < ( G ` z ) <-> ( G ` A ) < ( G ` suc y ) ) ) |
| 16 | 13 15 | imbi12d | |- ( z = suc y -> ( ( A e. z -> ( G ` A ) < ( G ` z ) ) <-> ( A e. suc y -> ( G ` A ) < ( G ` suc y ) ) ) ) |
| 17 | 16 | imbi2d | |- ( z = suc y -> ( ( A e. _om -> ( A e. z -> ( G ` A ) < ( G ` z ) ) ) <-> ( A e. _om -> ( A e. suc y -> ( G ` A ) < ( G ` suc y ) ) ) ) ) |
| 18 | eleq2 | |- ( z = B -> ( A e. z <-> A e. B ) ) |
|
| 19 | fveq2 | |- ( z = B -> ( G ` z ) = ( G ` B ) ) |
|
| 20 | 19 | breq2d | |- ( z = B -> ( ( G ` A ) < ( G ` z ) <-> ( G ` A ) < ( G ` B ) ) ) |
| 21 | 18 20 | imbi12d | |- ( z = B -> ( ( A e. z -> ( G ` A ) < ( G ` z ) ) <-> ( A e. B -> ( G ` A ) < ( G ` B ) ) ) ) |
| 22 | 21 | imbi2d | |- ( z = B -> ( ( A e. _om -> ( A e. z -> ( G ` A ) < ( G ` z ) ) ) <-> ( A e. _om -> ( A e. B -> ( G ` A ) < ( G ` B ) ) ) ) ) |
| 23 | noel | |- -. A e. (/) |
|
| 24 | 23 | pm2.21i | |- ( A e. (/) -> ( G ` A ) < ( G ` (/) ) ) |
| 25 | 24 | a1i | |- ( A e. _om -> ( A e. (/) -> ( G ` A ) < ( G ` (/) ) ) ) |
| 26 | id | |- ( ( A e. y -> ( G ` A ) < ( G ` y ) ) -> ( A e. y -> ( G ` A ) < ( G ` y ) ) ) |
|
| 27 | fveq2 | |- ( A = y -> ( G ` A ) = ( G ` y ) ) |
|
| 28 | 27 | a1i | |- ( ( A e. y -> ( G ` A ) < ( G ` y ) ) -> ( A = y -> ( G ` A ) = ( G ` y ) ) ) |
| 29 | 26 28 | orim12d | |- ( ( A e. y -> ( G ` A ) < ( G ` y ) ) -> ( ( A e. y \/ A = y ) -> ( ( G ` A ) < ( G ` y ) \/ ( G ` A ) = ( G ` y ) ) ) ) |
| 30 | elsuc2g | |- ( y e. _om -> ( A e. suc y <-> ( A e. y \/ A = y ) ) ) |
|
| 31 | 30 | bicomd | |- ( y e. _om -> ( ( A e. y \/ A = y ) <-> A e. suc y ) ) |
| 32 | 31 | adantl | |- ( ( A e. _om /\ y e. _om ) -> ( ( A e. y \/ A = y ) <-> A e. suc y ) ) |
| 33 | 1 2 | om2uzsuci | |- ( y e. _om -> ( G ` suc y ) = ( ( G ` y ) + 1 ) ) |
| 34 | 33 | breq2d | |- ( y e. _om -> ( ( G ` A ) < ( G ` suc y ) <-> ( G ` A ) < ( ( G ` y ) + 1 ) ) ) |
| 35 | 34 | adantl | |- ( ( A e. _om /\ y e. _om ) -> ( ( G ` A ) < ( G ` suc y ) <-> ( G ` A ) < ( ( G ` y ) + 1 ) ) ) |
| 36 | 1 2 | om2uzuzi | |- ( A e. _om -> ( G ` A ) e. ( ZZ>= ` C ) ) |
| 37 | 1 2 | om2uzuzi | |- ( y e. _om -> ( G ` y ) e. ( ZZ>= ` C ) ) |
| 38 | eluzelz | |- ( ( G ` A ) e. ( ZZ>= ` C ) -> ( G ` A ) e. ZZ ) |
|
| 39 | eluzelz | |- ( ( G ` y ) e. ( ZZ>= ` C ) -> ( G ` y ) e. ZZ ) |
|
| 40 | zleltp1 | |- ( ( ( G ` A ) e. ZZ /\ ( G ` y ) e. ZZ ) -> ( ( G ` A ) <_ ( G ` y ) <-> ( G ` A ) < ( ( G ` y ) + 1 ) ) ) |
|
| 41 | 38 39 40 | syl2an | |- ( ( ( G ` A ) e. ( ZZ>= ` C ) /\ ( G ` y ) e. ( ZZ>= ` C ) ) -> ( ( G ` A ) <_ ( G ` y ) <-> ( G ` A ) < ( ( G ` y ) + 1 ) ) ) |
| 42 | 36 37 41 | syl2an | |- ( ( A e. _om /\ y e. _om ) -> ( ( G ` A ) <_ ( G ` y ) <-> ( G ` A ) < ( ( G ` y ) + 1 ) ) ) |
| 43 | 36 38 | syl | |- ( A e. _om -> ( G ` A ) e. ZZ ) |
| 44 | 43 | zred | |- ( A e. _om -> ( G ` A ) e. RR ) |
| 45 | 37 39 | syl | |- ( y e. _om -> ( G ` y ) e. ZZ ) |
| 46 | 45 | zred | |- ( y e. _om -> ( G ` y ) e. RR ) |
| 47 | leloe | |- ( ( ( G ` A ) e. RR /\ ( G ` y ) e. RR ) -> ( ( G ` A ) <_ ( G ` y ) <-> ( ( G ` A ) < ( G ` y ) \/ ( G ` A ) = ( G ` y ) ) ) ) |
|
| 48 | 44 46 47 | syl2an | |- ( ( A e. _om /\ y e. _om ) -> ( ( G ` A ) <_ ( G ` y ) <-> ( ( G ` A ) < ( G ` y ) \/ ( G ` A ) = ( G ` y ) ) ) ) |
| 49 | 35 42 48 | 3bitr2rd | |- ( ( A e. _om /\ y e. _om ) -> ( ( ( G ` A ) < ( G ` y ) \/ ( G ` A ) = ( G ` y ) ) <-> ( G ` A ) < ( G ` suc y ) ) ) |
| 50 | 32 49 | imbi12d | |- ( ( A e. _om /\ y e. _om ) -> ( ( ( A e. y \/ A = y ) -> ( ( G ` A ) < ( G ` y ) \/ ( G ` A ) = ( G ` y ) ) ) <-> ( A e. suc y -> ( G ` A ) < ( G ` suc y ) ) ) ) |
| 51 | 29 50 | imbitrid | |- ( ( A e. _om /\ y e. _om ) -> ( ( A e. y -> ( G ` A ) < ( G ` y ) ) -> ( A e. suc y -> ( G ` A ) < ( G ` suc y ) ) ) ) |
| 52 | 51 | expcom | |- ( y e. _om -> ( A e. _om -> ( ( A e. y -> ( G ` A ) < ( G ` y ) ) -> ( A e. suc y -> ( G ` A ) < ( G ` suc y ) ) ) ) ) |
| 53 | 52 | a2d | |- ( y e. _om -> ( ( A e. _om -> ( A e. y -> ( G ` A ) < ( G ` y ) ) ) -> ( A e. _om -> ( A e. suc y -> ( G ` A ) < ( G ` suc y ) ) ) ) ) |
| 54 | 7 12 17 22 25 53 | finds | |- ( B e. _om -> ( A e. _om -> ( A e. B -> ( G ` A ) < ( G ` B ) ) ) ) |
| 55 | 54 | impcom | |- ( ( A e. _om /\ B e. _om ) -> ( A e. B -> ( G ` A ) < ( G ` B ) ) ) |