This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order type of an ordinal under the e. order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oiid | ⊢ ( Ord 𝐴 → OrdIso ( E , 𝐴 ) = ( I ↾ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe | ⊢ ( Ord 𝐴 → E We 𝐴 ) | |
| 2 | epse | ⊢ E Se 𝐴 | |
| 3 | 2 | a1i | ⊢ ( Ord 𝐴 → E Se 𝐴 ) |
| 4 | eqid | ⊢ OrdIso ( E , 𝐴 ) = OrdIso ( E , 𝐴 ) | |
| 5 | 4 | oiiso2 | ⊢ ( ( E We 𝐴 ∧ E Se 𝐴 ) → OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , ran OrdIso ( E , 𝐴 ) ) ) |
| 6 | 1 2 5 | sylancl | ⊢ ( Ord 𝐴 → OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , ran OrdIso ( E , 𝐴 ) ) ) |
| 7 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 8 | 4 | oismo | ⊢ ( 𝐴 ⊆ On → ( Smo OrdIso ( E , 𝐴 ) ∧ ran OrdIso ( E , 𝐴 ) = 𝐴 ) ) |
| 9 | 7 8 | syl | ⊢ ( Ord 𝐴 → ( Smo OrdIso ( E , 𝐴 ) ∧ ran OrdIso ( E , 𝐴 ) = 𝐴 ) ) |
| 10 | isoeq5 | ⊢ ( ran OrdIso ( E , 𝐴 ) = 𝐴 → ( OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , ran OrdIso ( E , 𝐴 ) ) ↔ OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , 𝐴 ) ) ) | |
| 11 | 9 10 | simpl2im | ⊢ ( Ord 𝐴 → ( OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , ran OrdIso ( E , 𝐴 ) ) ↔ OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , 𝐴 ) ) ) |
| 12 | 6 11 | mpbid | ⊢ ( Ord 𝐴 → OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , 𝐴 ) ) |
| 13 | 4 | oicl | ⊢ Ord dom OrdIso ( E , 𝐴 ) |
| 14 | 13 | a1i | ⊢ ( Ord 𝐴 → Ord dom OrdIso ( E , 𝐴 ) ) |
| 15 | id | ⊢ ( Ord 𝐴 → Ord 𝐴 ) | |
| 16 | ordiso2 | ⊢ ( ( OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , 𝐴 ) ∧ Ord dom OrdIso ( E , 𝐴 ) ∧ Ord 𝐴 ) → dom OrdIso ( E , 𝐴 ) = 𝐴 ) | |
| 17 | 12 14 15 16 | syl3anc | ⊢ ( Ord 𝐴 → dom OrdIso ( E , 𝐴 ) = 𝐴 ) |
| 18 | isoeq4 | ⊢ ( dom OrdIso ( E , 𝐴 ) = 𝐴 → ( OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , 𝐴 ) ↔ OrdIso ( E , 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( Ord 𝐴 → ( OrdIso ( E , 𝐴 ) Isom E , E ( dom OrdIso ( E , 𝐴 ) , 𝐴 ) ↔ OrdIso ( E , 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) ) ) |
| 20 | 12 19 | mpbid | ⊢ ( Ord 𝐴 → OrdIso ( E , 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) ) |
| 21 | weniso | ⊢ ( ( E We 𝐴 ∧ E Se 𝐴 ∧ OrdIso ( E , 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) ) → OrdIso ( E , 𝐴 ) = ( I ↾ 𝐴 ) ) | |
| 22 | 1 3 20 21 | syl3anc | ⊢ ( Ord 𝐴 → OrdIso ( E , 𝐴 ) = ( I ↾ 𝐴 ) ) |