This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative to having a well-order on R in wemapso is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by AV, 1-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| wemapso2.u | ⊢ 𝑈 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | ||
| Assertion | wemapso2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 2 | wemapso2.u | ⊢ 𝑈 = { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } | |
| 3 | 1 2 | wemapso2lem | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) ∧ 𝑍 ∈ V ) → 𝑇 Or 𝑈 ) |
| 4 | 3 | expcom | ⊢ ( 𝑍 ∈ V → ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or 𝑈 ) ) |
| 5 | so0 | ⊢ 𝑇 Or ∅ | |
| 6 | relfsupp | ⊢ Rel finSupp | |
| 7 | 6 | brrelex2i | ⊢ ( 𝑥 finSupp 𝑍 → 𝑍 ∈ V ) |
| 8 | 7 | con3i | ⊢ ( ¬ 𝑍 ∈ V → ¬ 𝑥 finSupp 𝑍 ) |
| 9 | 8 | ralrimivw | ⊢ ( ¬ 𝑍 ∈ V → ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) |
| 10 | rabeq0 | ⊢ ( { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ↔ ∀ 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ¬ 𝑥 finSupp 𝑍 ) | |
| 11 | 9 10 | sylibr | ⊢ ( ¬ 𝑍 ∈ V → { 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ∣ 𝑥 finSupp 𝑍 } = ∅ ) |
| 12 | 2 11 | eqtrid | ⊢ ( ¬ 𝑍 ∈ V → 𝑈 = ∅ ) |
| 13 | soeq2 | ⊢ ( 𝑈 = ∅ → ( 𝑇 Or 𝑈 ↔ 𝑇 Or ∅ ) ) | |
| 14 | 12 13 | syl | ⊢ ( ¬ 𝑍 ∈ V → ( 𝑇 Or 𝑈 ↔ 𝑇 Or ∅ ) ) |
| 15 | 5 14 | mpbiri | ⊢ ( ¬ 𝑍 ∈ V → 𝑇 Or 𝑈 ) |
| 16 | 15 | a1d | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or 𝑈 ) ) |
| 17 | 4 16 | pm2.61i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵 ) → 𝑇 Or 𝑈 ) |