This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odupos.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| Assertion | odupos | ⊢ ( 𝑂 ∈ Poset → 𝐷 ∈ Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odupos.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | 1 | fvexi | ⊢ 𝐷 ∈ V |
| 3 | 2 | a1i | ⊢ ( 𝑂 ∈ Poset → 𝐷 ∈ V ) |
| 4 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 5 | 1 4 | odubas | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
| 6 | 5 | a1i | ⊢ ( 𝑂 ∈ Poset → ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) ) |
| 7 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 8 | 1 7 | oduleval | ⊢ ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) |
| 9 | 8 | a1i | ⊢ ( 𝑂 ∈ Poset → ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) ) |
| 10 | 4 7 | posref | ⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) → 𝑎 ( le ‘ 𝑂 ) 𝑎 ) |
| 11 | vex | ⊢ 𝑎 ∈ V | |
| 12 | 11 11 | brcnv | ⊢ ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑎 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑎 ) |
| 13 | 10 12 | sylibr | ⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) → 𝑎 ◡ ( le ‘ 𝑂 ) 𝑎 ) |
| 14 | vex | ⊢ 𝑏 ∈ V | |
| 15 | 11 14 | brcnv | ⊢ ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ↔ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) |
| 16 | 14 11 | brcnv | ⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) |
| 17 | 15 16 | anbi12ci | ⊢ ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ) ↔ ( 𝑎 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) ) |
| 18 | 4 7 | posasymb | ⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) → ( ( 𝑎 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) ↔ 𝑎 = 𝑏 ) ) |
| 19 | 18 | biimpd | ⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) → ( ( 𝑎 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) → 𝑎 = 𝑏 ) ) |
| 20 | 17 19 | biimtrid | ⊢ ( ( 𝑂 ∈ Poset ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) → ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ) → 𝑎 = 𝑏 ) ) |
| 21 | 3anrev | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑐 ∈ ( Base ‘ 𝑂 ) ) ↔ ( 𝑐 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) ) | |
| 22 | 4 7 | postr | ⊢ ( ( 𝑂 ∈ Poset ∧ ( 𝑐 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑎 ∈ ( Base ‘ 𝑂 ) ) ) → ( ( 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) → 𝑐 ( le ‘ 𝑂 ) 𝑎 ) ) |
| 23 | 21 22 | sylan2b | ⊢ ( ( 𝑂 ∈ Poset ∧ ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑐 ∈ ( Base ‘ 𝑂 ) ) ) → ( ( 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) → 𝑐 ( le ‘ 𝑂 ) 𝑎 ) ) |
| 24 | vex | ⊢ 𝑐 ∈ V | |
| 25 | 14 24 | brcnv | ⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ 𝑐 ( le ‘ 𝑂 ) 𝑏 ) |
| 26 | 15 25 | anbi12ci | ⊢ ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ) ↔ ( 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ( le ‘ 𝑂 ) 𝑎 ) ) |
| 27 | 11 24 | brcnv | ⊢ ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ 𝑐 ( le ‘ 𝑂 ) 𝑎 ) |
| 28 | 23 26 27 | 3imtr4g | ⊢ ( ( 𝑂 ∈ Poset ∧ ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ∧ 𝑐 ∈ ( Base ‘ 𝑂 ) ) ) → ( ( 𝑎 ◡ ( le ‘ 𝑂 ) 𝑏 ∧ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ) → 𝑎 ◡ ( le ‘ 𝑂 ) 𝑐 ) ) |
| 29 | 3 6 9 13 20 28 | isposd | ⊢ ( 𝑂 ∈ Poset → 𝐷 ∈ Poset ) |