This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | posi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| posi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | posi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | simp1 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Poset ) | |
| 4 | simp2 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 5 | simp3 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 6 | 1 2 | posi | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) ) ) |
| 7 | 3 4 5 5 6 | syl13anc | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) ) ) |
| 8 | 7 | simp2d | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 9 | 1 2 | posref | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
| 10 | breq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 11 | 9 10 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 𝑌 → 𝑋 ≤ 𝑌 ) ) |
| 12 | breq1 | ⊢ ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋 ) ) | |
| 13 | 9 12 | syl5ibcom | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 𝑌 → 𝑌 ≤ 𝑋 ) ) |
| 14 | 11 13 | jcad | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ) ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 → ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ) ) |
| 16 | 8 15 | impbid | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |