This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| oduval.l | ⊢ ≤ = ( le ‘ 𝑂 ) | ||
| Assertion | oduleval | ⊢ ◡ ≤ = ( le ‘ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | oduval.l | ⊢ ≤ = ( le ‘ 𝑂 ) | |
| 3 | fvex | ⊢ ( le ‘ 𝑂 ) ∈ V | |
| 4 | 3 | cnvex | ⊢ ◡ ( le ‘ 𝑂 ) ∈ V |
| 5 | pleid | ⊢ le = Slot ( le ‘ ndx ) | |
| 6 | 5 | setsid | ⊢ ( ( 𝑂 ∈ V ∧ ◡ ( le ‘ 𝑂 ) ∈ V ) → ◡ ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) ) |
| 7 | 4 6 | mpan2 | ⊢ ( 𝑂 ∈ V → ◡ ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) ) |
| 8 | 5 | str0 | ⊢ ∅ = ( le ‘ ∅ ) |
| 9 | fvprc | ⊢ ( ¬ 𝑂 ∈ V → ( le ‘ 𝑂 ) = ∅ ) | |
| 10 | 9 | cnveqd | ⊢ ( ¬ 𝑂 ∈ V → ◡ ( le ‘ 𝑂 ) = ◡ ∅ ) |
| 11 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 12 | 10 11 | eqtrdi | ⊢ ( ¬ 𝑂 ∈ V → ◡ ( le ‘ 𝑂 ) = ∅ ) |
| 13 | reldmsets | ⊢ Rel dom sSet | |
| 14 | 13 | ovprc1 | ⊢ ( ¬ 𝑂 ∈ V → ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) = ∅ ) |
| 15 | 14 | fveq2d | ⊢ ( ¬ 𝑂 ∈ V → ( le ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) = ( le ‘ ∅ ) ) |
| 16 | 8 12 15 | 3eqtr4a | ⊢ ( ¬ 𝑂 ∈ V → ◡ ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) ) |
| 17 | 7 16 | pm2.61i | ⊢ ◡ ( le ‘ 𝑂 ) = ( le ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 18 | 2 | cnveqi | ⊢ ◡ ≤ = ◡ ( le ‘ 𝑂 ) |
| 19 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 20 | 1 19 | oduval | ⊢ 𝐷 = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) |
| 21 | 20 | fveq2i | ⊢ ( le ‘ 𝐷 ) = ( le ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 22 | 17 18 21 | 3eqtr4i | ⊢ ◡ ≤ = ( le ‘ 𝐷 ) |