This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odupos.d | |- D = ( ODual ` O ) |
|
| Assertion | odupos | |- ( O e. Poset -> D e. Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odupos.d | |- D = ( ODual ` O ) |
|
| 2 | 1 | fvexi | |- D e. _V |
| 3 | 2 | a1i | |- ( O e. Poset -> D e. _V ) |
| 4 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 5 | 1 4 | odubas | |- ( Base ` O ) = ( Base ` D ) |
| 6 | 5 | a1i | |- ( O e. Poset -> ( Base ` O ) = ( Base ` D ) ) |
| 7 | eqid | |- ( le ` O ) = ( le ` O ) |
|
| 8 | 1 7 | oduleval | |- `' ( le ` O ) = ( le ` D ) |
| 9 | 8 | a1i | |- ( O e. Poset -> `' ( le ` O ) = ( le ` D ) ) |
| 10 | 4 7 | posref | |- ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a ( le ` O ) a ) |
| 11 | vex | |- a e. _V |
|
| 12 | 11 11 | brcnv | |- ( a `' ( le ` O ) a <-> a ( le ` O ) a ) |
| 13 | 10 12 | sylibr | |- ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a `' ( le ` O ) a ) |
| 14 | vex | |- b e. _V |
|
| 15 | 11 14 | brcnv | |- ( a `' ( le ` O ) b <-> b ( le ` O ) a ) |
| 16 | 14 11 | brcnv | |- ( b `' ( le ` O ) a <-> a ( le ` O ) b ) |
| 17 | 15 16 | anbi12ci | |- ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) <-> ( a ( le ` O ) b /\ b ( le ` O ) a ) ) |
| 18 | 4 7 | posasymb | |- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) <-> a = b ) ) |
| 19 | 18 | biimpd | |- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) -> a = b ) ) |
| 20 | 17 19 | biimtrid | |- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) -> a = b ) ) |
| 21 | 3anrev | |- ( ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) <-> ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) |
|
| 22 | 4 7 | postr | |- ( ( O e. Poset /\ ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) |
| 23 | 21 22 | sylan2b | |- ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) |
| 24 | vex | |- c e. _V |
|
| 25 | 14 24 | brcnv | |- ( b `' ( le ` O ) c <-> c ( le ` O ) b ) |
| 26 | 15 25 | anbi12ci | |- ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) <-> ( c ( le ` O ) b /\ b ( le ` O ) a ) ) |
| 27 | 11 24 | brcnv | |- ( a `' ( le ` O ) c <-> c ( le ` O ) a ) |
| 28 | 23 26 27 | 3imtr4g | |- ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) -> a `' ( le ` O ) c ) ) |
| 29 | 3 6 9 13 20 28 | isposd | |- ( O e. Poset -> D e. Poset ) |