This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic subgroup of size ( OA ) has ( phi( OA ) ) generators. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | odngen | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) = ( ϕ ‘ ( 𝑂 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | eqid | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) | |
| 5 | 4 | mptpreima | ⊢ ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) “ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) = { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } } |
| 6 | 5 | fveq2i | ⊢ ( ♯ ‘ ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) “ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } } ) |
| 7 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 8 | 1 7 2 3 | odf1o2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 9 | f1ocnv | ⊢ ( ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) → ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 𝐾 ‘ { 𝐴 } ) –1-1-onto→ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) | |
| 10 | f1of1 | ⊢ ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 𝐾 ‘ { 𝐴 } ) –1-1-onto→ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 𝐾 ‘ { 𝐴 } ) –1-1→ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 𝐾 ‘ { 𝐴 } ) –1-1→ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) |
| 12 | ssrab2 | ⊢ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ⊆ ( 𝐾 ‘ { 𝐴 } ) | |
| 13 | fvex | ⊢ ( 𝐾 ‘ { 𝐴 } ) ∈ V | |
| 14 | 13 | rabex | ⊢ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ∈ V |
| 15 | 14 | f1imaen | ⊢ ( ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 𝐾 ‘ { 𝐴 } ) –1-1→ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) → ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) “ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ≈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) |
| 16 | hasheni | ⊢ ( ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) “ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ≈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } → ( ♯ ‘ ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) “ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ) = ( ♯ ‘ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ) | |
| 17 | 15 16 | syl | ⊢ ( ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 𝐾 ‘ { 𝐴 } ) –1-1→ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) → ( ♯ ‘ ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) “ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ) = ( ♯ ‘ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ) |
| 18 | 11 12 17 | sylancl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( ◡ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) “ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ) = ( ♯ ‘ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) ) |
| 19 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝐺 ∈ Grp ) | |
| 20 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝐴 ∈ 𝑋 ) | |
| 21 | elfzoelz | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → 𝑦 ∈ ℤ ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝑦 ∈ ℤ ) |
| 23 | 1 7 3 | cycsubg2cl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ ) → ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 24 | 19 20 22 23 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 25 | fveqeq2 | ⊢ ( 𝑥 = ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) → ( ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ) ) | |
| 26 | 25 | elrab3 | ⊢ ( ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) → ( ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ↔ ( 𝑂 ‘ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ) ) |
| 27 | 24 26 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ↔ ( 𝑂 ‘ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ) ) |
| 28 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 29 | 1 2 7 | odmulgeq | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑦 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
| 30 | 19 20 22 28 29 | syl31anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( ( 𝑂 ‘ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑦 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
| 31 | 27 30 | bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ↔ ( 𝑦 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
| 32 | 31 | rabbidva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } } = { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 } ) |
| 33 | 32 | fveq2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } } ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 } ) ) |
| 34 | dfphi2 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ϕ ‘ ( 𝑂 ‘ 𝐴 ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 } ) ) | |
| 35 | 34 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ϕ ‘ ( 𝑂 ‘ 𝐴 ) ) = ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 } ) ) |
| 36 | 33 35 | eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ { 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∣ ( 𝑦 ( .g ‘ 𝐺 ) 𝐴 ) ∈ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } } ) = ( ϕ ‘ ( 𝑂 ‘ 𝐴 ) ) ) |
| 37 | 6 18 36 | 3eqtr3a | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ { 𝑥 ∈ ( 𝐾 ‘ { 𝐴 } ) ∣ ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝐴 ) } ) = ( ϕ ‘ ( 𝑂 ‘ 𝐴 ) ) ) |