This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multiple of a point of finite order only has the same order if the multiplier is relatively prime. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odmulgid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odmulgid.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odmulgid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | odmulgeq | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odmulgid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odmulgid.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odmulgid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | eqcom | ⊢ ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) | |
| 6 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 8 | 7 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 9 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐺 ∈ Grp ) | |
| 10 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) | |
| 11 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 12 | 9 10 5 11 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 13 | 1 2 | odcl | ⊢ ( ( 𝑁 · 𝐴 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∈ ℕ0 ) |
| 14 | 12 13 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∈ ℕ0 ) |
| 15 | 14 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∈ ℂ ) |
| 16 | nnne0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
| 18 | 1 2 3 | odmulg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| 20 | breq1 | ⊢ ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = 0 → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ 0 ∥ ( 𝑂 ‘ 𝐴 ) ) ) | |
| 21 | 19 20 | syl5ibcom | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = 0 → 0 ∥ ( 𝑂 ‘ 𝐴 ) ) ) |
| 22 | 7 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 23 | 0dvds | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ → ( 0 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 0 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 25 | 21 24 | sylibd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = 0 → ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 26 | 25 | necon3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ≠ 0 → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ≠ 0 ) ) |
| 27 | 17 26 | mpd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ≠ 0 ) |
| 28 | 8 15 27 | diveq1ad | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = 1 ↔ ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
| 29 | 10 22 | gcdcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 30 | 29 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ∈ ℂ ) |
| 31 | 15 30 | mulcomd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) · ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) = ( ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
| 32 | 1 2 3 | odmulg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
| 34 | 31 33 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) · ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 35 | 8 15 30 27 | divmuld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) · ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) ) |
| 36 | 34 35 | mpbird | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) |
| 37 | 36 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = 1 ↔ ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
| 38 | 28 37 | bitr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ↔ ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
| 39 | 4 38 | bitrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |