This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg2cl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| cycsubg2cl.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubg2cl.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | cycsubg2cl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg2cl.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubg2cl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubg2cl.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | 1 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝑋 ) ) |
| 5 | 4 | acsmred | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) |
| 7 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ 𝑋 ) | |
| 8 | 7 | snssd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → { 𝐴 } ⊆ 𝑋 ) |
| 9 | 3 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 12 | 6 3 8 | mrcssidd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) |
| 13 | snssg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 16 | 2 | subgmulgcl | ⊢ ( ( ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ) → ( 𝑁 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 17 | 10 11 15 16 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑁 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |