This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element with nonzero order has as many multiples as its order. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1o1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odf1o1.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odf1o1.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odf1o1.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | odf1o2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1o1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odf1o1.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | odf1o1.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 4 | odf1o1.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝐺 ∈ Grp ) | |
| 6 | elfzoelz | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → 𝑥 ∈ ℤ ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝑥 ∈ ℤ ) |
| 8 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → 𝐴 ∈ 𝑋 ) | |
| 9 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) |
| 11 | 10 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → ( 𝑥 · 𝐴 ) ∈ 𝑋 ) ) |
| 12 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 13 | 12 | nncnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
| 14 | 13 | subid1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( 𝑂 ‘ 𝐴 ) − 0 ) = ( 𝑂 ‘ 𝐴 ) ) |
| 15 | 14 | breq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 0 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ) ) |
| 16 | fzocongeq | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 0 ) ∥ ( 𝑥 − 𝑦 ) ↔ 𝑥 = 𝑦 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 0 ) ∥ ( 𝑥 − 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 18 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝐺 ∈ Grp ) | |
| 19 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝐴 ∈ 𝑋 ) | |
| 20 | 6 | ad2antrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝑥 ∈ ℤ ) |
| 21 | elfzoelz | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) → 𝑦 ∈ ℤ ) | |
| 22 | 21 | ad2antll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → 𝑦 ∈ ℤ ) |
| 23 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 24 | 1 3 2 23 | odcong | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) ) |
| 25 | 18 19 20 22 24 | syl112anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) ) |
| 26 | 15 17 25 | 3bitr3rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ) → ( ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ↔ 𝑥 = 𝑦 ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) → ( ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 28 | 11 27 | dom2lem | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 ) |
| 29 | f1fn | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) Fn ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) | |
| 30 | 28 29 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) Fn ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) |
| 31 | resss | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ↾ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) ⊆ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 32 | 6 | ssriv | ⊢ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ⊆ ℤ |
| 33 | resmpt | ⊢ ( ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ⊆ ℤ → ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ↾ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) | |
| 34 | 32 33 | ax-mp | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ↾ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) |
| 35 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) | |
| 36 | 35 | cbvmptv | ⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) |
| 37 | 31 34 36 | 3sstr3i | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) |
| 38 | rnss | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) | |
| 39 | 37 38 | mp1i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ⊆ ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 40 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℤ ) | |
| 41 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 42 | zmodfzo | ⊢ ( ( 𝑦 ∈ ℤ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) | |
| 43 | 40 41 42 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) |
| 44 | 1 3 2 23 | odmod | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 45 | 44 | 3an1rs | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑦 · 𝐴 ) ) |
| 46 | 45 | eqcomd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑦 · 𝐴 ) = ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 47 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) → ( 𝑥 · 𝐴 ) = ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) | |
| 48 | 47 | rspceeqv | ⊢ ( ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ ( 𝑦 · 𝐴 ) = ( ( 𝑦 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 49 | 43 46 48 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 50 | ovex | ⊢ ( 𝑦 · 𝐴 ) ∈ V | |
| 51 | eqid | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) | |
| 52 | 51 | elrnmpt | ⊢ ( ( 𝑦 · 𝐴 ) ∈ V → ( ( 𝑦 · 𝐴 ) ∈ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) ) |
| 53 | 50 52 | ax-mp | ⊢ ( ( 𝑦 · 𝐴 ) ∈ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ↔ ∃ 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ( 𝑦 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) |
| 54 | 49 53 | sylibr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ 𝑦 ∈ ℤ ) → ( 𝑦 · 𝐴 ) ∈ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 55 | 54 | fmpttd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) : ℤ ⟶ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 56 | 55 | frnd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ⊆ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 57 | 39 56 | eqssd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 58 | eqid | ⊢ ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) = ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) | |
| 59 | 1 2 58 4 | cycsubg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 60 | 59 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝐾 ‘ { 𝐴 } ) = ran ( 𝑦 ∈ ℤ ↦ ( 𝑦 · 𝐴 ) ) ) |
| 61 | 57 60 | eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ( 𝐾 ‘ { 𝐴 } ) ) |
| 62 | df-fo | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –onto→ ( 𝐾 ‘ { 𝐴 } ) ↔ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) Fn ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∧ ran ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) = ( 𝐾 ‘ { 𝐴 } ) ) ) | |
| 63 | 30 61 62 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 64 | df-f1 | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 ↔ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ⟶ 𝑋 ∧ Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) ) | |
| 65 | 64 | simprbi | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1→ 𝑋 → Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 66 | 28 65 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) |
| 67 | dff1o3 | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ↔ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –onto→ ( 𝐾 ‘ { 𝐴 } ) ∧ Fun ◡ ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) ) ) | |
| 68 | 63 66 67 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 · 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |