This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponent of a group. (Contributed by Mario Carneiro, 23-Apr-2016) (Revised by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gexval.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| gexval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gexval.4 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| gexval.i | ⊢ 𝐼 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } | ||
| Assertion | gexval | ⊢ ( 𝐺 ∈ 𝑉 → 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexval.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gexval.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | gexval.3 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | gexval.4 | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 5 | gexval.i | ⊢ 𝐼 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } | |
| 6 | df-gex | ⊢ gEx = ( 𝑔 ∈ V ↦ ⦋ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) ) | |
| 7 | nnex | ⊢ ℕ ∈ V | |
| 8 | 7 | rabex | ⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } ∈ V |
| 9 | 8 | a1i | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } ∈ V ) |
| 10 | simpr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) | |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
| 12 | 11 1 | eqtr4di | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( Base ‘ 𝑔 ) = 𝑋 ) |
| 13 | 10 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( .g ‘ 𝑔 ) = ( .g ‘ 𝐺 ) ) |
| 14 | 13 2 | eqtr4di | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( .g ‘ 𝑔 ) = · ) |
| 15 | 14 | oveqd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 𝑦 · 𝑥 ) ) |
| 16 | 10 | fveq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( 0g ‘ 𝑔 ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 16 3 | eqtr4di | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( 0g ‘ 𝑔 ) = 0 ) |
| 18 | 15 17 | eqeq12d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ( 𝑦 · 𝑥 ) = 0 ) ) |
| 19 | 12 18 | raleqbidv | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 ) ) |
| 20 | 19 | rabbidv | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) |
| 21 | 20 5 | eqtr4di | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } = 𝐼 ) |
| 22 | 21 | eqeq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ( 𝑖 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } ↔ 𝑖 = 𝐼 ) ) |
| 23 | 22 | biimpa | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) ∧ 𝑖 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } ) → 𝑖 = 𝐼 ) |
| 24 | 23 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) ∧ 𝑖 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } ) → ( 𝑖 = ∅ ↔ 𝐼 = ∅ ) ) |
| 25 | 23 | infeq1d | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) ∧ 𝑖 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } ) → inf ( 𝑖 , ℝ , < ) = inf ( 𝐼 , ℝ , < ) ) |
| 26 | 24 25 | ifbieq2d | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) ∧ 𝑖 = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } ) → if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| 27 | 9 26 | csbied | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑔 = 𝐺 ) → ⦋ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ( 𝑦 ( .g ‘ 𝑔 ) 𝑥 ) = ( 0g ‘ 𝑔 ) } / 𝑖 ⦌ if ( 𝑖 = ∅ , 0 , inf ( 𝑖 , ℝ , < ) ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| 28 | elex | ⊢ ( 𝐺 ∈ 𝑉 → 𝐺 ∈ V ) | |
| 29 | c0ex | ⊢ 0 ∈ V | |
| 30 | ltso | ⊢ < Or ℝ | |
| 31 | 30 | infex | ⊢ inf ( 𝐼 , ℝ , < ) ∈ V |
| 32 | 29 31 | ifex | ⊢ if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ∈ V |
| 33 | 32 | a1i | ⊢ ( 𝐺 ∈ 𝑉 → if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ∈ V ) |
| 34 | 6 27 28 33 | fvmptd2 | ⊢ ( 𝐺 ∈ 𝑉 → ( gEx ‘ 𝐺 ) = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |
| 35 | 4 34 | eqtrid | ⊢ ( 𝐺 ∈ 𝑉 → 𝐸 = if ( 𝐼 = ∅ , 0 , inf ( 𝐼 , ℝ , < ) ) ) |