This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odm1inv.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odm1inv.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odm1inv.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odm1inv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| odm1inv.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| odm1inv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| Assertion | odm1inv | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) − 1 ) · 𝐴 ) = ( 𝐼 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odm1inv.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odm1inv.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odm1inv.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odm1inv.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | odm1inv.g | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 6 | odm1inv.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 8 | 1 2 3 7 | odid | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 10 | 1 3 | mulg1 | ⊢ ( 𝐴 ∈ 𝑋 → ( 1 · 𝐴 ) = 𝐴 ) |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 ) |
| 12 | 9 11 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ( -g ‘ 𝐺 ) ( 1 · 𝐴 ) ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
| 13 | 1 2 6 | odcld | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 14 | 13 | nn0zd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 15 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 16 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 17 | 1 3 16 | mulgsubdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑂 ‘ 𝐴 ) − 1 ) · 𝐴 ) = ( ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ( -g ‘ 𝐺 ) ( 1 · 𝐴 ) ) ) |
| 18 | 5 14 15 6 17 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) − 1 ) · 𝐴 ) = ( ( ( 𝑂 ‘ 𝐴 ) · 𝐴 ) ( -g ‘ 𝐺 ) ( 1 · 𝐴 ) ) ) |
| 19 | 1 16 4 7 | grpinvval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
| 20 | 5 6 19 | syl2anc | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
| 21 | 12 18 20 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ 𝐴 ) − 1 ) · 𝐴 ) = ( 𝐼 ‘ 𝐴 ) ) |