This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odmulgid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odmulgid.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odmulgid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | odmulgid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ 𝐾 ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝐾 · 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odmulgid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odmulgid.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odmulgid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → 𝐺 ∈ Grp ) | |
| 5 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → 𝐾 ∈ ℤ ) | |
| 6 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 7 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → 𝐴 ∈ 𝑋 ) | |
| 8 | 1 3 | mulgass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐾 · 𝑁 ) · 𝐴 ) = ( 𝐾 · ( 𝑁 · 𝐴 ) ) ) |
| 9 | 4 5 6 7 8 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝐾 · 𝑁 ) · 𝐴 ) = ( 𝐾 · ( 𝑁 · 𝐴 ) ) ) |
| 10 | 9 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( ( ( 𝐾 · 𝑁 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ↔ ( 𝐾 · ( 𝑁 · 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 11 | 5 6 | zmulcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( 𝐾 · 𝑁 ) ∈ ℤ ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 13 | 1 2 3 12 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 · 𝑁 ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝐾 · 𝑁 ) ↔ ( ( 𝐾 · 𝑁 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 14 | 4 7 11 13 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝐾 · 𝑁 ) ↔ ( ( 𝐾 · 𝑁 ) · 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
| 15 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 16 | 4 6 7 15 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 17 | 1 2 3 12 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑁 · 𝐴 ) ∈ 𝑋 ∧ 𝐾 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ 𝐾 ↔ ( 𝐾 · ( 𝑁 · 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 18 | 4 16 5 17 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ 𝐾 ↔ ( 𝐾 · ( 𝑁 · 𝐴 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 19 | 10 14 18 | 3bitr4rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ 𝐾 ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝐾 · 𝑁 ) ) ) |