This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odm1inv.x | |- X = ( Base ` G ) |
|
| odm1inv.o | |- O = ( od ` G ) |
||
| odm1inv.t | |- .x. = ( .g ` G ) |
||
| odm1inv.i | |- I = ( invg ` G ) |
||
| odm1inv.g | |- ( ph -> G e. Grp ) |
||
| odm1inv.1 | |- ( ph -> A e. X ) |
||
| Assertion | odm1inv | |- ( ph -> ( ( ( O ` A ) - 1 ) .x. A ) = ( I ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odm1inv.x | |- X = ( Base ` G ) |
|
| 2 | odm1inv.o | |- O = ( od ` G ) |
|
| 3 | odm1inv.t | |- .x. = ( .g ` G ) |
|
| 4 | odm1inv.i | |- I = ( invg ` G ) |
|
| 5 | odm1inv.g | |- ( ph -> G e. Grp ) |
|
| 6 | odm1inv.1 | |- ( ph -> A e. X ) |
|
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 8 | 1 2 3 7 | odid | |- ( A e. X -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) |
| 9 | 6 8 | syl | |- ( ph -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) |
| 10 | 1 3 | mulg1 | |- ( A e. X -> ( 1 .x. A ) = A ) |
| 11 | 6 10 | syl | |- ( ph -> ( 1 .x. A ) = A ) |
| 12 | 9 11 | oveq12d | |- ( ph -> ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
| 13 | 1 2 6 | odcld | |- ( ph -> ( O ` A ) e. NN0 ) |
| 14 | 13 | nn0zd | |- ( ph -> ( O ` A ) e. ZZ ) |
| 15 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 16 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 17 | 1 3 16 | mulgsubdir | |- ( ( G e. Grp /\ ( ( O ` A ) e. ZZ /\ 1 e. ZZ /\ A e. X ) ) -> ( ( ( O ` A ) - 1 ) .x. A ) = ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) ) |
| 18 | 5 14 15 6 17 | syl13anc | |- ( ph -> ( ( ( O ` A ) - 1 ) .x. A ) = ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) ) |
| 19 | 1 16 4 7 | grpinvval2 | |- ( ( G e. Grp /\ A e. X ) -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
| 20 | 5 6 19 | syl2anc | |- ( ph -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
| 21 | 12 18 20 | 3eqtr4d | |- ( ph -> ( ( ( O ` A ) - 1 ) .x. A ) = ( I ` A ) ) |