This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odm1inv.x | ||
| odm1inv.o | |||
| odm1inv.t | |||
| odm1inv.i | |||
| odm1inv.g | |||
| odm1inv.1 | |||
| Assertion | odm1inv |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odm1inv.x | ||
| 2 | odm1inv.o | ||
| 3 | odm1inv.t | ||
| 4 | odm1inv.i | ||
| 5 | odm1inv.g | ||
| 6 | odm1inv.1 | ||
| 7 | eqid | ||
| 8 | 1 2 3 7 | odid | |
| 9 | 6 8 | syl | |
| 10 | 1 3 | mulg1 | |
| 11 | 6 10 | syl | |
| 12 | 9 11 | oveq12d | |
| 13 | 1 2 6 | odcld | |
| 14 | 13 | nn0zd | |
| 15 | 1zzd | ||
| 16 | eqid | ||
| 17 | 1 3 16 | mulgsubdir | |
| 18 | 5 14 15 6 17 | syl13anc | |
| 19 | 1 16 4 7 | grpinvval2 | |
| 20 | 5 6 19 | syl2anc | |
| 21 | 12 18 20 | 3eqtr4d |