This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a group element is always a nonnegative integer, deduction form of odcl . (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcld.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| odcld.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odcld.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| Assertion | odcld | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcld.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | odcld.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odcld.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 4 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |