This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | odhash3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 | hashcl | ⊢ ( ( 𝐾 ‘ { 𝐴 } ) ∈ Fin → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℕ0 ) | |
| 7 | 6 | nn0red | ⊢ ( ( 𝐾 ‘ { 𝐴 } ) ∈ Fin → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ) |
| 8 | pnfnre | ⊢ +∞ ∉ ℝ | |
| 9 | 8 | neli | ⊢ ¬ +∞ ∈ ℝ |
| 10 | 1 2 3 | odhash | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = +∞ ) |
| 11 | 10 | eleq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
| 12 | 9 11 | mtbiri | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ¬ ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ) |
| 13 | 12 | 3expia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ¬ ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ ) ) |
| 14 | 13 | necon2ad | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ∈ ℝ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 15 | 7 14 | syl5 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐾 ‘ { 𝐴 } ) ∈ Fin → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
| 17 | elnnne0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ∧ ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) | |
| 18 | 5 16 17 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 19 | 1 2 3 | odhash2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 20 | 18 19 | syld3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 21 | 20 | eqcomd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐾 ‘ { 𝐴 } ) ∈ Fin ) → ( 𝑂 ‘ 𝐴 ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |