This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element which generates a finite subgroup has order the size of that subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odhash.x | |- X = ( Base ` G ) |
|
| odhash.o | |- O = ( od ` G ) |
||
| odhash.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | odhash3 | |- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) = ( # ` ( K ` { A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | |- X = ( Base ` G ) |
|
| 2 | odhash.o | |- O = ( od ` G ) |
|
| 3 | odhash.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 4 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 5 | 4 | 3ad2ant2 | |- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) e. NN0 ) |
| 6 | hashcl | |- ( ( K ` { A } ) e. Fin -> ( # ` ( K ` { A } ) ) e. NN0 ) |
|
| 7 | 6 | nn0red | |- ( ( K ` { A } ) e. Fin -> ( # ` ( K ` { A } ) ) e. RR ) |
| 8 | pnfnre | |- +oo e/ RR |
|
| 9 | 8 | neli | |- -. +oo e. RR |
| 10 | 1 2 3 | odhash | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ( K ` { A } ) ) = +oo ) |
| 11 | 10 | eleq1d | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( ( # ` ( K ` { A } ) ) e. RR <-> +oo e. RR ) ) |
| 12 | 9 11 | mtbiri | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ( # ` ( K ` { A } ) ) e. RR ) |
| 13 | 12 | 3expia | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 -> -. ( # ` ( K ` { A } ) ) e. RR ) ) |
| 14 | 13 | necon2ad | |- ( ( G e. Grp /\ A e. X ) -> ( ( # ` ( K ` { A } ) ) e. RR -> ( O ` A ) =/= 0 ) ) |
| 15 | 7 14 | syl5 | |- ( ( G e. Grp /\ A e. X ) -> ( ( K ` { A } ) e. Fin -> ( O ` A ) =/= 0 ) ) |
| 16 | 15 | 3impia | |- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) =/= 0 ) |
| 17 | elnnne0 | |- ( ( O ` A ) e. NN <-> ( ( O ` A ) e. NN0 /\ ( O ` A ) =/= 0 ) ) |
|
| 18 | 5 16 17 | sylanbrc | |- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) e. NN ) |
| 19 | 1 2 3 | odhash2 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) |
| 20 | 18 19 | syld3an3 | |- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) |
| 21 | 20 | eqcomd | |- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) = ( # ` ( K ` { A } ) ) ) |