This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | odhash | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 5 | 1 4 2 3 | odf1o1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 6 | zex | ⊢ ℤ ∈ V | |
| 7 | 6 | f1oen | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) → ℤ ≈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 8 | hasheni | ⊢ ( ℤ ≈ ( 𝐾 ‘ { 𝐴 } ) → ( ♯ ‘ ℤ ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) | |
| 9 | 5 7 8 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ♯ ‘ ℤ ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |
| 10 | ominf | ⊢ ¬ ω ∈ Fin | |
| 11 | znnen | ⊢ ℤ ≈ ℕ | |
| 12 | nnenom | ⊢ ℕ ≈ ω | |
| 13 | 11 12 | entri | ⊢ ℤ ≈ ω |
| 14 | enfi | ⊢ ( ℤ ≈ ω → ( ℤ ∈ Fin ↔ ω ∈ Fin ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( ℤ ∈ Fin ↔ ω ∈ Fin ) |
| 16 | 10 15 | mtbir | ⊢ ¬ ℤ ∈ Fin |
| 17 | hashinf | ⊢ ( ( ℤ ∈ V ∧ ¬ ℤ ∈ Fin ) → ( ♯ ‘ ℤ ) = +∞ ) | |
| 18 | 6 16 17 | mp2an | ⊢ ( ♯ ‘ ℤ ) = +∞ |
| 19 | 9 18 | eqtr3di | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = +∞ ) |