This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | odhash2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odhash.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odhash.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odhash.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 5 | 1 4 2 3 | odf1o2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 6 | ovex | ⊢ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ∈ V | |
| 7 | 6 | f1oen | ⊢ ( ( 𝑥 ∈ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ↦ ( 𝑥 ( .g ‘ 𝐺 ) 𝐴 ) ) : ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) → ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ≈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 8 | hasheni | ⊢ ( ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ≈ ( 𝐾 ‘ { 𝐴 } ) → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) | |
| 9 | 5 7 8 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) ) |
| 10 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 12 | hashfzo0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 0 ..^ ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 14 | 9 13 | eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ ( 𝐾 ‘ { 𝐴 } ) ) = ( 𝑂 ‘ 𝐴 ) ) |