This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odcong | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | zsubcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) | |
| 6 | 1 2 3 4 | oddvds | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ↔ ( ( 𝑀 − 𝑁 ) · 𝐴 ) = 0 ) ) |
| 7 | 5 6 | syl3an3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ↔ ( ( 𝑀 − 𝑁 ) · 𝐴 ) = 0 ) ) |
| 8 | simp1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝐺 ∈ Grp ) | |
| 9 | simp3l | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) | |
| 10 | simp3r | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) | |
| 11 | simp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝐴 ∈ 𝑋 ) | |
| 12 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 13 | 1 3 12 | mulgsubdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑀 − 𝑁 ) · 𝐴 ) = ( ( 𝑀 · 𝐴 ) ( -g ‘ 𝐺 ) ( 𝑁 · 𝐴 ) ) ) |
| 14 | 8 9 10 11 13 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑀 − 𝑁 ) · 𝐴 ) = ( ( 𝑀 · 𝐴 ) ( -g ‘ 𝐺 ) ( 𝑁 · 𝐴 ) ) ) |
| 15 | 14 | eqeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( 𝑀 − 𝑁 ) · 𝐴 ) = 0 ↔ ( ( 𝑀 · 𝐴 ) ( -g ‘ 𝐺 ) ( 𝑁 · 𝐴 ) ) = 0 ) ) |
| 16 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 · 𝐴 ) ∈ 𝑋 ) |
| 17 | 8 9 11 16 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 · 𝐴 ) ∈ 𝑋 ) |
| 18 | 1 3 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 19 | 8 10 11 18 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
| 20 | 1 4 12 | grpsubeq0 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · 𝐴 ) ∈ 𝑋 ∧ ( 𝑁 · 𝐴 ) ∈ 𝑋 ) → ( ( ( 𝑀 · 𝐴 ) ( -g ‘ 𝐺 ) ( 𝑁 · 𝐴 ) ) = 0 ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |
| 21 | 8 17 19 20 | syl3anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( 𝑀 · 𝐴 ) ( -g ‘ 𝐺 ) ( 𝑁 · 𝐴 ) ) = 0 ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |
| 22 | 7 15 21 | 3bitrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |