This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubg2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| cycsubg2.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubg2.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | ||
| cycsubg2.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | cycsubg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubg2.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubg2.f | ⊢ 𝐹 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | cycsubg2.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | snssg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑦 ↔ { 𝐴 } ⊆ 𝑦 ) ) | |
| 6 | 5 | bicomd | ⊢ ( 𝐴 ∈ 𝑋 → ( { 𝐴 } ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( { 𝐴 } ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦 ) ) |
| 8 | 7 | rabbidv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } = { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑦 } ) |
| 9 | 8 | inteqd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑦 } ) |
| 10 | 1 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝑋 ) ) |
| 11 | 10 | acsmred | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) |
| 12 | snssi | ⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ⊆ 𝑋 ) | |
| 13 | 4 | mrcval | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } ) |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ { 𝐴 } ⊆ 𝑦 } ) |
| 15 | 1 2 3 | cycsubg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ran 𝐹 = ∩ { 𝑦 ∈ ( SubGrp ‘ 𝐺 ) ∣ 𝐴 ∈ 𝑦 } ) |
| 16 | 9 14 15 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ran 𝐹 ) |