This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzocongeq | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( 𝐷 − 𝐶 ) ∥ ( 𝐴 − 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel2 | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐷 ∈ ℤ ) | |
| 2 | elfzoel1 | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐶 ∈ ℤ ) | |
| 3 | 1 2 | zsubcld | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → ( 𝐷 − 𝐶 ) ∈ ℤ ) |
| 4 | elfzoelz | ⊢ ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐴 ∈ ℤ ) | |
| 5 | elfzoelz | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐵 ∈ ℤ ) | |
| 6 | zsubcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 8 | dvdsabsb | ⊢ ( ( ( 𝐷 − 𝐶 ) ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( ( 𝐷 − 𝐶 ) ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐷 − 𝐶 ) ∥ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) | |
| 9 | 3 7 8 | syl2an2 | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( 𝐷 − 𝐶 ) ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐷 − 𝐶 ) ∥ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) |
| 10 | fzomaxdif | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) ) | |
| 11 | fzo0dvdseq | ⊢ ( ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ( 0 ..^ ( 𝐷 − 𝐶 ) ) → ( ( 𝐷 − 𝐶 ) ∥ ( abs ‘ ( 𝐴 − 𝐵 ) ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) = 0 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( 𝐷 − 𝐶 ) ∥ ( abs ‘ ( 𝐴 − 𝐵 ) ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) = 0 ) ) |
| 13 | 9 12 | bitrd | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( 𝐷 − 𝐶 ) ∥ ( 𝐴 − 𝐵 ) ↔ ( abs ‘ ( 𝐴 − 𝐵 ) ) = 0 ) ) |
| 14 | 4 | zcnd | ⊢ ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐴 ∈ ℂ ) |
| 15 | 5 | zcnd | ⊢ ( 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) → 𝐵 ∈ ℂ ) |
| 16 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 17 | 14 15 16 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 18 | 17 | abs00ad | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) = 0 ↔ ( 𝐴 − 𝐵 ) = 0 ) ) |
| 19 | subeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) | |
| 20 | 14 15 19 | syl2an | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| 21 | 18 20 | bitrd | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( abs ‘ ( 𝐴 − 𝐵 ) ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| 22 | 13 21 | bitrd | ⊢ ( ( 𝐴 ∈ ( 𝐶 ..^ 𝐷 ) ∧ 𝐵 ∈ ( 𝐶 ..^ 𝐷 ) ) → ( ( 𝐷 − 𝐶 ) ∥ ( 𝐴 − 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |