This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1o1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odf1o1.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odf1o1.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odf1o1.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | ||
| Assertion | odf1o1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1o1.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odf1o1.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | odf1o1.o | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 4 | odf1o1.k | ⊢ 𝐾 = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → 𝐺 ∈ Grp ) | |
| 6 | 1 | subgacs | ⊢ ( 𝐺 ∈ Grp → ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝑋 ) ) |
| 7 | acsmre | ⊢ ( ( SubGrp ‘ 𝐺 ) ∈ ( ACS ‘ 𝑋 ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ) |
| 9 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → 𝐴 ∈ 𝑋 ) | |
| 10 | 9 | snssd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → { 𝐴 } ⊆ 𝑋 ) |
| 11 | 4 | mrccl | ⊢ ( ( ( SubGrp ‘ 𝐺 ) ∈ ( Moore ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 14 | 8 4 10 | mrcssidd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → { 𝐴 } ⊆ ( 𝐾 ‘ { 𝐴 } ) ) |
| 15 | snidg | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 } ) | |
| 16 | 9 15 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → 𝐴 ∈ { 𝐴 } ) |
| 17 | 14 16 | sseldd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 18 | 2 | subgmulgcl | ⊢ ( ( ( 𝐾 ‘ { 𝐴 } ) ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ ( 𝐾 ‘ { 𝐴 } ) ) → ( 𝑥 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 19 | 12 13 17 18 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ 𝑥 ∈ ℤ ) → ( 𝑥 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ → ( 𝑥 · 𝐴 ) ∈ ( 𝐾 ‘ { 𝐴 } ) ) ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑂 ‘ 𝐴 ) = 0 ) | |
| 22 | 21 | breq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ 0 ∥ ( 𝑥 − 𝑦 ) ) ) |
| 23 | zsubcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 − 𝑦 ) ∈ ℤ ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 − 𝑦 ) ∈ ℤ ) |
| 25 | 0dvds | ⊢ ( ( 𝑥 − 𝑦 ) ∈ ℤ → ( 0 ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 − 𝑦 ) = 0 ) ) | |
| 26 | 24 25 | syl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 0 ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 27 | 22 26 | bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 − 𝑦 ) = 0 ) ) |
| 28 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝐺 ∈ Grp ) | |
| 29 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝐴 ∈ 𝑋 ) | |
| 30 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) | |
| 31 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) | |
| 32 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 33 | 1 3 2 32 | odcong | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) ) |
| 34 | 28 29 30 31 33 | syl112anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑥 − 𝑦 ) ↔ ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) ) |
| 35 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 36 | zcn | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) | |
| 37 | subeq0 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑥 − 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 − 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 39 | 38 | adantl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 − 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 40 | 27 34 39 | 3bitr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ↔ 𝑥 = 𝑦 ) ) |
| 41 | 40 | ex | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 42 | 20 41 | dom2lem | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –1-1→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 43 | 19 | fmpttd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ ⟶ ( 𝐾 ‘ { 𝐴 } ) ) |
| 44 | eqid | ⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) | |
| 45 | 1 2 44 4 | cycsubg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐾 ‘ { 𝐴 } ) = ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ) |
| 46 | 45 | 3adant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝐾 ‘ { 𝐴 } ) = ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) ) |
| 47 | 46 | eqcomd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) = ( 𝐾 ‘ { 𝐴 } ) ) |
| 48 | dffo2 | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –onto→ ( 𝐾 ‘ { 𝐴 } ) ↔ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ ⟶ ( 𝐾 ‘ { 𝐴 } ) ∧ ran ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) = ( 𝐾 ‘ { 𝐴 } ) ) ) | |
| 49 | 43 47 48 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –onto→ ( 𝐾 ‘ { 𝐴 } ) ) |
| 50 | df-f1o | ⊢ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ↔ ( ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –1-1→ ( 𝐾 ‘ { 𝐴 } ) ∧ ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –onto→ ( 𝐾 ‘ { 𝐴 } ) ) ) | |
| 51 | 42 49 50 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑥 ∈ ℤ ↦ ( 𝑥 · 𝐴 ) ) : ℤ –1-1-onto→ ( 𝐾 ‘ { 𝐴 } ) ) |