This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1o1.x | |- X = ( Base ` G ) |
|
| odf1o1.t | |- .x. = ( .g ` G ) |
||
| odf1o1.o | |- O = ( od ` G ) |
||
| odf1o1.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
||
| Assertion | odf1o1 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-onto-> ( K ` { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1o1.x | |- X = ( Base ` G ) |
|
| 2 | odf1o1.t | |- .x. = ( .g ` G ) |
|
| 3 | odf1o1.o | |- O = ( od ` G ) |
|
| 4 | odf1o1.k | |- K = ( mrCls ` ( SubGrp ` G ) ) |
|
| 5 | simpl1 | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> G e. Grp ) |
|
| 6 | 1 | subgacs | |- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) |
| 7 | acsmre | |- ( ( SubGrp ` G ) e. ( ACS ` X ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) |
| 9 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. X ) |
|
| 10 | 9 | snssd | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> { A } C_ X ) |
| 11 | 4 | mrccl | |- ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 12 | 8 10 11 | syl2anc | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 13 | simpr | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 14 | 8 4 10 | mrcssidd | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> { A } C_ ( K ` { A } ) ) |
| 15 | snidg | |- ( A e. X -> A e. { A } ) |
|
| 16 | 9 15 | syl | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. { A } ) |
| 17 | 14 16 | sseldd | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. ( K ` { A } ) ) |
| 18 | 2 | subgmulgcl | |- ( ( ( K ` { A } ) e. ( SubGrp ` G ) /\ x e. ZZ /\ A e. ( K ` { A } ) ) -> ( x .x. A ) e. ( K ` { A } ) ) |
| 19 | 12 13 17 18 | syl3anc | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( x .x. A ) e. ( K ` { A } ) ) |
| 20 | 19 | ex | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ -> ( x .x. A ) e. ( K ` { A } ) ) ) |
| 21 | simpl3 | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) = 0 ) |
|
| 22 | 21 | breq1d | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> 0 || ( x - y ) ) ) |
| 23 | zsubcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x - y ) e. ZZ ) |
|
| 24 | 23 | adantl | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x - y ) e. ZZ ) |
| 25 | 0dvds | |- ( ( x - y ) e. ZZ -> ( 0 || ( x - y ) <-> ( x - y ) = 0 ) ) |
|
| 26 | 24 25 | syl | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( 0 || ( x - y ) <-> ( x - y ) = 0 ) ) |
| 27 | 22 26 | bitrd | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x - y ) = 0 ) ) |
| 28 | simpl1 | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> G e. Grp ) |
|
| 29 | simpl2 | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. X ) |
|
| 30 | simprl | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
|
| 31 | simprr | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 32 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 33 | 1 3 2 32 | odcong | |- ( ( G e. Grp /\ A e. X /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) |
| 34 | 28 29 30 31 33 | syl112anc | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) |
| 35 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 36 | zcn | |- ( y e. ZZ -> y e. CC ) |
|
| 37 | subeq0 | |- ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 <-> x = y ) ) |
|
| 38 | 35 36 37 | syl2an | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( x - y ) = 0 <-> x = y ) ) |
| 39 | 38 | adantl | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x - y ) = 0 <-> x = y ) ) |
| 40 | 27 34 39 | 3bitr3d | |- ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x .x. A ) = ( y .x. A ) <-> x = y ) ) |
| 41 | 40 | ex | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( ( x e. ZZ /\ y e. ZZ ) -> ( ( x .x. A ) = ( y .x. A ) <-> x = y ) ) ) |
| 42 | 20 41 | dom2lem | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-> ( K ` { A } ) ) |
| 43 | 19 | fmpttd | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ --> ( K ` { A } ) ) |
| 44 | eqid | |- ( x e. ZZ |-> ( x .x. A ) ) = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 45 | 1 2 44 4 | cycsubg2 | |- ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = ran ( x e. ZZ |-> ( x .x. A ) ) ) |
| 46 | 45 | 3adant3 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( K ` { A } ) = ran ( x e. ZZ |-> ( x .x. A ) ) ) |
| 47 | 46 | eqcomd | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ran ( x e. ZZ |-> ( x .x. A ) ) = ( K ` { A } ) ) |
| 48 | dffo2 | |- ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) <-> ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ --> ( K ` { A } ) /\ ran ( x e. ZZ |-> ( x .x. A ) ) = ( K ` { A } ) ) ) |
|
| 49 | 43 47 48 | sylanbrc | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) ) |
| 50 | df-f1o | |- ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-onto-> ( K ` { A } ) <-> ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-> ( K ` { A } ) /\ ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) ) ) |
|
| 51 | 42 49 50 | sylanbrc | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-onto-> ( K ` { A } ) ) |