This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprm | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 𝑁 ∈ ℙ ) | |
| 2 | prmz | ⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℤ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 𝑁 ∈ ℤ ) |
| 4 | eldifsni | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 𝑁 ≠ 2 ) | |
| 5 | 4 | necomd | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 2 ≠ 𝑁 ) |
| 6 | 5 | neneqd | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 = 𝑁 ) |
| 7 | 2z | ⊢ 2 ∈ ℤ | |
| 8 | uzid | ⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 10 | dvdsprm | ⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℙ ) → ( 2 ∥ 𝑁 ↔ 2 = 𝑁 ) ) | |
| 11 | 9 1 10 | sylancr | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 2 ∥ 𝑁 ↔ 2 = 𝑁 ) ) |
| 12 | 6 11 | mtbird | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑁 ) |
| 13 | 1z | ⊢ 1 ∈ ℤ | |
| 14 | n2dvds1 | ⊢ ¬ 2 ∥ 1 | |
| 15 | omoe | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) ∧ ( 1 ∈ ℤ ∧ ¬ 2 ∥ 1 ) ) → 2 ∥ ( 𝑁 − 1 ) ) | |
| 16 | 13 14 15 | mpanr12 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ) → 2 ∥ ( 𝑁 − 1 ) ) |
| 17 | 3 12 16 | syl2anc | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 2 ∥ ( 𝑁 − 1 ) ) |
| 18 | prmnn | ⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ ) | |
| 19 | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) | |
| 20 | 1 18 19 | 3syl | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 21 | nn0z | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 22 | evend2 | ⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 2 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) | |
| 23 | 20 21 22 | 3syl | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 2 ∥ ( 𝑁 − 1 ) ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
| 24 | 17 23 | mpbid | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) |
| 25 | prmuz2 | ⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 26 | uz2m1nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ ) | |
| 27 | nngt0 | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → 0 < ( 𝑁 − 1 ) ) | |
| 28 | nnre | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → ( 𝑁 − 1 ) ∈ ℝ ) | |
| 29 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 30 | 29 | a1i | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → 2 ∈ ℝ+ ) |
| 31 | 28 30 | gt0divd | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → ( 0 < ( 𝑁 − 1 ) ↔ 0 < ( ( 𝑁 − 1 ) / 2 ) ) ) |
| 32 | 27 31 | mpbid | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → 0 < ( ( 𝑁 − 1 ) / 2 ) ) |
| 33 | 1 25 26 32 | 4syl | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 0 < ( ( 𝑁 − 1 ) / 2 ) ) |
| 34 | elnnz | ⊢ ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 − 1 ) / 2 ) ) ) | |
| 35 | 24 33 34 | sylanbrc | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ ) |