This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omoe | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) ∧ ( 𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵 ) ) → 2 ∥ ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 | ⊢ ( 𝐴 ∈ ℤ → ( ¬ 2 ∥ 𝐴 ↔ ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ) ) | |
| 2 | odd2np1 | ⊢ ( 𝐵 ∈ ℤ → ( ¬ 2 ∥ 𝐵 ↔ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ) | |
| 3 | 1 2 | bi2anan9 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ) ) |
| 4 | reeanv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ↔ ( ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) ) | |
| 5 | 2z | ⊢ 2 ∈ ℤ | |
| 6 | zsubcl | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 − 𝑏 ) ∈ ℤ ) | |
| 7 | dvdsmul1 | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝑎 − 𝑏 ) ∈ ℤ ) → 2 ∥ ( 2 · ( 𝑎 − 𝑏 ) ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 2 ∥ ( 2 · ( 𝑎 − 𝑏 ) ) ) |
| 9 | zcn | ⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℂ ) | |
| 10 | zcn | ⊢ ( 𝑏 ∈ ℤ → 𝑏 ∈ ℂ ) | |
| 11 | 2cn | ⊢ 2 ∈ ℂ | |
| 12 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( 2 · 𝑎 ) ∈ ℂ ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝑎 ∈ ℂ → ( 2 · 𝑎 ) ∈ ℂ ) |
| 14 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · 𝑏 ) ∈ ℂ ) | |
| 15 | 11 14 | mpan | ⊢ ( 𝑏 ∈ ℂ → ( 2 · 𝑏 ) ∈ ℂ ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | pnpcan2 | ⊢ ( ( ( 2 · 𝑎 ) ∈ ℂ ∧ ( 2 · 𝑏 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) = ( ( 2 · 𝑎 ) − ( 2 · 𝑏 ) ) ) | |
| 18 | 16 17 | mp3an3 | ⊢ ( ( ( 2 · 𝑎 ) ∈ ℂ ∧ ( 2 · 𝑏 ) ∈ ℂ ) → ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) = ( ( 2 · 𝑎 ) − ( 2 · 𝑏 ) ) ) |
| 19 | 13 15 18 | syl2an | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) = ( ( 2 · 𝑎 ) − ( 2 · 𝑏 ) ) ) |
| 20 | subdi | ⊢ ( ( 2 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( 𝑎 − 𝑏 ) ) = ( ( 2 · 𝑎 ) − ( 2 · 𝑏 ) ) ) | |
| 21 | 11 20 | mp3an1 | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( 2 · ( 𝑎 − 𝑏 ) ) = ( ( 2 · 𝑎 ) − ( 2 · 𝑏 ) ) ) |
| 22 | 19 21 | eqtr4d | ⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ) → ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) = ( 2 · ( 𝑎 − 𝑏 ) ) ) |
| 23 | 9 10 22 | syl2an | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) = ( 2 · ( 𝑎 − 𝑏 ) ) ) |
| 24 | 8 23 | breqtrrd | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → 2 ∥ ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) ) |
| 25 | oveq12 | ⊢ ( ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) = ( 𝐴 − 𝐵 ) ) | |
| 26 | 25 | breq2d | ⊢ ( ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → ( 2 ∥ ( ( ( 2 · 𝑎 ) + 1 ) − ( ( 2 · 𝑏 ) + 1 ) ) ↔ 2 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 27 | 24 26 | syl5ibcom | ⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → 2 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 28 | 27 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ( ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → 2 ∥ ( 𝐴 − 𝐵 ) ) |
| 29 | 4 28 | sylbir | ⊢ ( ( ∃ 𝑎 ∈ ℤ ( ( 2 · 𝑎 ) + 1 ) = 𝐴 ∧ ∃ 𝑏 ∈ ℤ ( ( 2 · 𝑏 ) + 1 ) = 𝐵 ) → 2 ∥ ( 𝐴 − 𝐵 ) ) |
| 30 | 3 29 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) → 2 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ¬ 2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵 ) ) → 2 ∥ ( 𝐴 − 𝐵 ) ) |
| 32 | 31 | an4s | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴 ) ∧ ( 𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵 ) ) → 2 ∥ ( 𝐴 − 𝐵 ) ) |