This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime not equal to 2 is an odd positive integer. (Contributed by AV, 28-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnoddn2prm | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 𝑁 ∈ ℙ ) | |
| 2 | prmnn | ⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℕ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 𝑁 ∈ ℕ ) |
| 4 | oddprm | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ ) | |
| 5 | nnz | ⊢ ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) | |
| 6 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 7 | oddm1d2 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
| 9 | 5 8 | syl5ibrcom | ⊢ ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ → ( 𝑁 ∈ ℕ → ¬ 2 ∥ 𝑁 ) ) |
| 10 | 4 9 | syl | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 𝑁 ∈ ℕ → ¬ 2 ∥ 𝑁 ) ) |
| 11 | 3 10 | jcai | ⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁 ) ) |