This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddprm | |- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifi | |- ( N e. ( Prime \ { 2 } ) -> N e. Prime ) |
|
| 2 | prmz | |- ( N e. Prime -> N e. ZZ ) |
|
| 3 | 1 2 | syl | |- ( N e. ( Prime \ { 2 } ) -> N e. ZZ ) |
| 4 | eldifsni | |- ( N e. ( Prime \ { 2 } ) -> N =/= 2 ) |
|
| 5 | 4 | necomd | |- ( N e. ( Prime \ { 2 } ) -> 2 =/= N ) |
| 6 | 5 | neneqd | |- ( N e. ( Prime \ { 2 } ) -> -. 2 = N ) |
| 7 | 2z | |- 2 e. ZZ |
|
| 8 | uzid | |- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
|
| 9 | 7 8 | ax-mp | |- 2 e. ( ZZ>= ` 2 ) |
| 10 | dvdsprm | |- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. Prime ) -> ( 2 || N <-> 2 = N ) ) |
|
| 11 | 9 1 10 | sylancr | |- ( N e. ( Prime \ { 2 } ) -> ( 2 || N <-> 2 = N ) ) |
| 12 | 6 11 | mtbird | |- ( N e. ( Prime \ { 2 } ) -> -. 2 || N ) |
| 13 | 1z | |- 1 e. ZZ |
|
| 14 | n2dvds1 | |- -. 2 || 1 |
|
| 15 | omoe | |- ( ( ( N e. ZZ /\ -. 2 || N ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( N - 1 ) ) |
|
| 16 | 13 14 15 | mpanr12 | |- ( ( N e. ZZ /\ -. 2 || N ) -> 2 || ( N - 1 ) ) |
| 17 | 3 12 16 | syl2anc | |- ( N e. ( Prime \ { 2 } ) -> 2 || ( N - 1 ) ) |
| 18 | prmnn | |- ( N e. Prime -> N e. NN ) |
|
| 19 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 20 | 1 18 19 | 3syl | |- ( N e. ( Prime \ { 2 } ) -> ( N - 1 ) e. NN0 ) |
| 21 | nn0z | |- ( ( N - 1 ) e. NN0 -> ( N - 1 ) e. ZZ ) |
|
| 22 | evend2 | |- ( ( N - 1 ) e. ZZ -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
|
| 23 | 20 21 22 | 3syl | |- ( N e. ( Prime \ { 2 } ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 24 | 17 23 | mpbid | |- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. ZZ ) |
| 25 | prmuz2 | |- ( N e. Prime -> N e. ( ZZ>= ` 2 ) ) |
|
| 26 | uz2m1nn | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
|
| 27 | nngt0 | |- ( ( N - 1 ) e. NN -> 0 < ( N - 1 ) ) |
|
| 28 | nnre | |- ( ( N - 1 ) e. NN -> ( N - 1 ) e. RR ) |
|
| 29 | 2rp | |- 2 e. RR+ |
|
| 30 | 29 | a1i | |- ( ( N - 1 ) e. NN -> 2 e. RR+ ) |
| 31 | 28 30 | gt0divd | |- ( ( N - 1 ) e. NN -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) ) |
| 32 | 27 31 | mpbid | |- ( ( N - 1 ) e. NN -> 0 < ( ( N - 1 ) / 2 ) ) |
| 33 | 1 25 26 32 | 4syl | |- ( N e. ( Prime \ { 2 } ) -> 0 < ( ( N - 1 ) / 2 ) ) |
| 34 | elnnz | |- ( ( ( N - 1 ) / 2 ) e. NN <-> ( ( ( N - 1 ) / 2 ) e. ZZ /\ 0 < ( ( N - 1 ) / 2 ) ) ) |
|
| 35 | 24 33 34 | sylanbrc | |- ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN ) |